Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.3.299

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites  

Zhen, Weijun (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region, Xinjiang University)
Sun, Jinlu (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region, Xinjiang University)
Publication Information
Polymer(Korea) / v.38, no.3, 2014 , pp. 299-306 More about this Journal
Abstract
ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.
Keywords
poly lactic acid; ZnO pillared organic saponite; nanocomposites; properties; crystallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003).   DOI   ScienceOn
2 K. Mogyorosi, J. Nemeth, I. Dekany, and J. H. Fendler, Prog. Coll. Polym. Sci., 117, 88 (2002).   DOI
3 S. D. Park, M. Todo, and K. Arakawa, J. Mater. Sci., 39, 1113 (2004).   DOI
4 P. Song, Z. Wei, J. Liang, G. Chen, and W. Zhang, Polym. Eng. Sci., 52, 1058 (2012).   DOI
5 A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 101, 300 (2006).   DOI   ScienceOn
6 L. Jiang, J. Zhang, and M. P. Wolcott, Polymer, 48, 7632 (2007).   DOI   ScienceOn
7 D. Garlotta, J. Polym. Environ., 9, 63 (2001).   DOI   ScienceOn
8 N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1997).   DOI
9 A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 107, 2246 (2008).   DOI   ScienceOn
10 J. R. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 27, 285 (2003).
11 A. Grozdanov, A. Buzarovska, G. Bogoeva-Gaceva, and E. Nedkov, J. Polym. Sci. Part B: Polym. Phys., 43, 66 (2005).   DOI   ScienceOn
12 J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996).   DOI
13 M. A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont, and P. Dubois, Polymer, 44, 443 (2003).   DOI   ScienceOn
14 W. Zhen, C. Lu, C. Li, and M. Liang, Appl. Clay Sci., 57, 64 (2012).   DOI   ScienceOn
15 M. Kitano, T. Hamabe, and S. Maeda, J. Crystal Growth, 102, 965 (1990).   DOI   ScienceOn
16 K. Ogata, K. Maejima, S. Fujita, and S. Fujita, J. Crystal Growth, 248, 25 (2003).   DOI   ScienceOn
17 J. Li and W. Zhen, Acta Polymerica Sinica, 4, 534 (2013).
18 M. Majdan, O. Maryuk, S. Pikus, E. Olszewska, R. Kwiatkowski, and H. Kkrzypek, J. Mol. Struct., 740, 203 (2005).   DOI   ScienceOn
19 S. S. Ray, K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami, and K. Ueda, Polymer, 44, 6633 (2003).   DOI   ScienceOn
20 M. Pluta, A. Galeski, M. Alexandre, M. A. Paul, and P. Dubois, J. Appl. Polym. Sci., 86, 1497 (2002).   DOI   ScienceOn
21 Q. Zhou and M. Xanthos, Polym. Degrad. Stabil., 94, 327 (2009).   DOI   ScienceOn
22 J. H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci. Part B: Polym. Phys., 41, 94 (2003).
23 I. Pillin, N. Montrelay, A. Bourmaud, and Y. Grohens, Polym. Degrad. Stabil., 93, 321 (2008).   DOI   ScienceOn
24 S. Barrau, C. Vanmansart, M. Moreau, A. Addad, G. Stoclet, J. M. Lefebvre, and R. Seguela, Macromolecules, 44, 6496 (2011).   DOI   ScienceOn
25 J. V. Seppala, A. O. Helminen, and H. Korhonen, Macromol. Biosci., 4, 208 (2004).   DOI   ScienceOn
26 W. Y. Jang, K. H. Hong, B. H. Cho, S. H. Jang, S. I. Lee, B. S. Kim, B. Y. Shin, Polymer(Korea), 32, 116 (2008).
27 S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Sim, J. D. Nam, H. Kye, and Y. K. Lee, Polymer(Korea), 28, 519 (2004).
28 D. Wu, L. Wu, B. Xu, Y. Zhang, and M. Zhang, J. Polym. Sci. Part B: Polym. Phys., 45, 1100 (2007).   DOI   ScienceOn
29 P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, Appl. Phys. Lett., 77, 1081 (2000).
30 J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006).   DOI   ScienceOn
31 W. Zhai, Y. Ko, W. Zhu, A. Wong, and C. B. Park, Inter. J. Mol. Sci., 10, 5381 (2009).   DOI   ScienceOn
32 M. Kristiansen, M. Werner, T. Tervoort, P. Smith, M. Blomenhofer, and H. W. Schmidt, Macromolecules, 36, 5150 (2003).   DOI