DOI QR코드

DOI QR Code

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites

폴리락틱산/산화아연 기둥구조의 유기사포나이트 나노복합체의 특성, 구조 및 결정화

  • Zhen, Weijun (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region, Xinjiang University) ;
  • Sun, Jinlu (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region, Xinjiang University)
  • Received : 2013.10.30
  • Accepted : 2014.02.04
  • Published : 2014.05.25

Abstract

ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.

Keywords

References

  1. S. Barrau, C. Vanmansart, M. Moreau, A. Addad, G. Stoclet, J. M. Lefebvre, and R. Seguela, Macromolecules, 44, 6496 (2011). https://doi.org/10.1021/ma200842n
  2. Q. Zhou and M. Xanthos, Polym. Degrad. Stabil., 94, 327 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.12.009
  3. J. V. Seppala, A. O. Helminen, and H. Korhonen, Macromol. Biosci., 4, 208 (2004). https://doi.org/10.1002/mabi.200300105
  4. I. Pillin, N. Montrelay, A. Bourmaud, and Y. Grohens, Polym. Degrad. Stabil., 93, 321 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.12.005
  5. W. Zhai, Y. Ko, W. Zhu, A. Wong, and C. B. Park, Inter. J. Mol. Sci., 10, 5381 (2009). https://doi.org/10.3390/ijms10125381
  6. J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006). https://doi.org/10.1016/j.polymer.2005.12.066
  7. W. Y. Jang, K. H. Hong, B. H. Cho, S. H. Jang, S. I. Lee, B. S. Kim, B. Y. Shin, Polymer(Korea), 32, 116 (2008).
  8. S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Sim, J. D. Nam, H. Kye, and Y. K. Lee, Polymer(Korea), 28, 519 (2004).
  9. J. R. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 27, 285 (2003).
  10. A. Grozdanov, A. Buzarovska, G. Bogoeva-Gaceva, and E. Nedkov, J. Polym. Sci. Part B: Polym. Phys., 43, 66 (2005). https://doi.org/10.1002/polb.20302
  11. J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1
  12. D. Wu, L. Wu, B. Xu, Y. Zhang, and M. Zhang, J. Polym. Sci. Part B: Polym. Phys., 45, 1100 (2007). https://doi.org/10.1002/polb.21154
  13. M. A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont, and P. Dubois, Polymer, 44, 443 (2003). https://doi.org/10.1016/S0032-3861(02)00778-4
  14. W. Zhen, C. Lu, C. Li, and M. Liang, Appl. Clay Sci., 57, 64 (2012). https://doi.org/10.1016/j.clay.2012.01.002
  15. M. Kitano, T. Hamabe, and S. Maeda, J. Crystal Growth, 102, 965 (1990). https://doi.org/10.1016/0022-0248(90)90867-K
  16. K. Ogata, K. Maejima, S. Fujita, and S. Fujita, J. Crystal Growth, 248, 25 (2003). https://doi.org/10.1016/S0022-0248(02)01843-2
  17. P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, Appl. Phys. Lett., 77, 1081 (2000).
  18. J. Li and W. Zhen, Acta Polymerica Sinica, 4, 534 (2013).
  19. M. Majdan, O. Maryuk, S. Pikus, E. Olszewska, R. Kwiatkowski, and H. Kkrzypek, J. Mol. Struct., 740, 203 (2005). https://doi.org/10.1016/j.molstruc.2005.01.044
  20. S. S. Ray, K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami, and K. Ueda, Polymer, 44, 6633 (2003). https://doi.org/10.1016/j.polymer.2003.08.021
  21. M. Pluta, A. Galeski, M. Alexandre, M. A. Paul, and P. Dubois, J. Appl. Polym. Sci., 86, 1497 (2002). https://doi.org/10.1002/app.11309
  22. J. H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci. Part B: Polym. Phys., 41, 94 (2003).
  23. A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 107, 2246 (2008). https://doi.org/10.1002/app.27261
  24. S. D. Park, M. Todo, and K. Arakawa, J. Mater. Sci., 39, 1113 (2004). https://doi.org/10.1023/B:JMSC.0000012957.02434.1e
  25. P. Song, Z. Wei, J. Liang, G. Chen, and W. Zhang, Polym. Eng. Sci., 52, 1058 (2012). https://doi.org/10.1002/pen.22172
  26. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 101, 300 (2006). https://doi.org/10.1002/app.23346
  27. K. Mogyorosi, J. Nemeth, I. Dekany, and J. H. Fendler, Prog. Coll. Polym. Sci., 117, 88 (2002). https://doi.org/10.1007/3-540-45405-5_16
  28. L. Jiang, J. Zhang, and M. P. Wolcott, Polymer, 48, 7632 (2007). https://doi.org/10.1016/j.polymer.2007.11.001
  29. D. Garlotta, J. Polym. Environ., 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  30. M. Kristiansen, M. Werner, T. Tervoort, P. Smith, M. Blomenhofer, and H. W. Schmidt, Macromolecules, 36, 5150 (2003). https://doi.org/10.1021/ma030146t
  31. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  32. N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W

Cited by

  1. -lactide vol.27, pp.5, 2016, https://doi.org/10.1002/pat.3727
  2. Performance and crystallization kinetics of poly (L-lactic acid) toughened by poly (D-lactic acid) pp.07306679, 2017, https://doi.org/10.1002/adv.21816
  3. /Poly(L-lactic acid) nanocomposites pp.00323888, 2018, https://doi.org/10.1002/pen.24986
  4. Study on Thermal Performance of Composites Prepared Using Poly(L-Lactic Acid) and Melamine vol.10, pp.None, 2014, https://doi.org/10.2174/1874088x01610010002
  5. Surface Functionalization of Graphene Oxide via Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization and Its Effect on the Performance of Poly(lactic acid) vol.42, pp.4, 2014, https://doi.org/10.7317/pk.2018.42.4.581
  6. Adsorption-Based Synthesis of Environmentally Friendly Heterogeneous Chromium(III) Catalysts for Oxidation Reactions into Kaolinite, Saponite, and Their Amine-Modified Derivatives vol.1, pp.8, 2014, https://doi.org/10.1021/acsanm.8b00643