• Title/Summary/Keyword: Interfacial Reaction

Search Result 404, Processing Time 0.074 seconds

Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 계면안정성을 위한 완층층의 도입)

  • Kim, Kwang-Nyeon;Moon, Jooho;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.637-644
    • /
    • 2005
  • In order to find a proper buffering material which can prohibit an unwanted interfacial reaction between anode and electrolyte of LSGM-based SOFC, we examined a gadolinium doped ceria and scandium doped zirconia as a candidate. For this examination, we investigated the microstructural and phase stability of the interface under different buffering layer conditions. According to the investigation, ceria based material induced a serious La diffusion out of the LSGM electrolyte resulted in the formation of very resistive $LaSrGa_3O_7$ phase at the interface. On the other hand zirconia based material was directly reacted with LSGM electrolyte and thus produced very resistive reaction products such as $La_2Zr_2O_7,\;Sr_2ZrO_4,\;LaSrGaO_4\;and\;LaSrGa_3O_7$. From this study we found that an improper buffering material induced the higher internal cell resistance rather than an interfacial stability.

Effect of Heat Treatment on the Deformation and Fracture Behaviors of 3-ply Cu/Al/Cu Clad Metal (3층 Cu/Al/Cu 클래드재의 열처리온도에 따른 변형 및 파단거동)

  • Kim, In-Kyu;Ha, Jongsu;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.939-948
    • /
    • 2012
  • A 3-ply clad metal consisting of aluminum and copper was fabricated by roll bonding process and the microstructures and mechanical properties of the roll-bonded and post-roll-bonding heat treated Cu/Al/Cu clad metal were investigated. A brittle interfacial reaction layer formed at the Cu/Al interfaces at and above $400^{\circ}C$. The thickness of the reaction layer increased from $12{\mu}m$ at $400^{\circ}C$ to $28{\mu}m$ at $500^{\circ}C$. The stress-strain curves demonstrated that the strength decreased and the ductility increased with heat treatment up to $400^{\circ}C$. The clad metal heat treated at $300^{\circ}C$ with no indication of a reaction layer exhibited an excellent combination of the strength and ductility and no delamination of layers up to final fracture in the tensile testing. Above $400^{\circ}C$, the ductility decreased rasxpidly with little change of strength, reflecting the brittle nature of the intermetallic interlayers. In Cu/Al/Cu clad heat treated above $400^{\circ}C$, periodic parallel cracks perpendicular to the stress axis were observed at the interfacial reaction layer. In-situ optical microscopic observation revealed that cracks were formed in the Cu layer due to the strain concentration in the vicinity of horizontal cracks in the intermetallic layer, promoting the premature fracture of Cu layer. Vertical cracks parallel to the stress axis were also formed at 15% strain at $500^{\circ}C$, leading to the delamination of the Cu and Al layers.

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구)

  • Kim, Byungwoo;Choi, Hyeokgi;Jeon, Hyewon;Lee, Doyeong;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.

Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System (액-액 불균일계에서 상이동촉매의 반응속도론 해석)

  • Park, Sang-Wook;Moon, Jin-Bok;Hwang, Kyong-Son
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.230-237
    • /
    • 1994
  • The reaction conversions of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate by Aliquat 336 were measured in a flat agitator and a dispersion agitator. These measured data was used to analyze the complicated reaction mechanism of the liquid-liquid heterogeneous reaction by a phase transfer catalyst with a pseudo-first order reaction model, a interfacial reaction model and a bulk-body reaction model. The pseudo-firsts order reaction model and the interfacial reaction model could be explained by the experimental data from the dispersion agitator and the bulk-boby reaction model could be explained by those from the flat agitator and the reaction rate constants were $3.1{\times}10^{-4}$, $7.3{\times}10^{-4}$, $6.6m^3/kmol.s$ from these models at $25^{\circ}C$, respectively.

  • PDF

A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061 ($Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구)

  • Seo, S.Y.;An, B.G.;Lee, K.Y.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

α-case Interfacial Reaction Behavior of Al2O3 Mold Containing Interstitial and Substitutional Compounds for Titanium Investment Casting (침입형 및 치환형 화합물을 함유한 Ti 정밀주조용 Al2O3 주형의 α-case 계면반응 거동)

  • Choi, Bong-Jae;Lee, Seul;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.577-582
    • /
    • 2011
  • The newly developed ${\alpha}-case$ controlled mold material for Ti investment castings was suggested in this research. The $Al_2O_3$ mold containing interstitial $TiO_2$ and substitutional $Ti_3Al$ was manufactured by the reaction between $Al_2O_3$ and Ti. It is obvious that as the $TiO_2$ and $Ti_3Al$ content in the mold surface were increased, the depth of the interfacial reaction was significantly reduced. In addition, substitutional $Ti_5Si_3$ in the mold surface owing to the reaction between Ti and $SiO_2$ from the binder was effective for ${\alpha}-case$ reduction. Therefore, the ${\alpha}-case$ reduction was accomplished by the diffusion barrier effect of interstitial $TiO_2$, substitutional $Ti_3Al$ and $Ti_5Si_3$.

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.