DOI QR코드

DOI QR Code

Effect of Heat Treatment on the Deformation and Fracture Behaviors of 3-ply Cu/Al/Cu Clad Metal

3층 Cu/Al/Cu 클래드재의 열처리온도에 따른 변형 및 파단거동

  • Kim, In-Kyu (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Ha, Jongsu (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Hong, Sun Ig (Department of Advanced Materials Engineering, Chungnam National University)
  • 김인규 (충남대학교 나노소재공학과) ;
  • 하종수 (충남대학교 나노소재공학과) ;
  • 홍순익 (충남대학교 나노소재공학과)
  • Received : 2012.03.28
  • Published : 2012.12.25

Abstract

A 3-ply clad metal consisting of aluminum and copper was fabricated by roll bonding process and the microstructures and mechanical properties of the roll-bonded and post-roll-bonding heat treated Cu/Al/Cu clad metal were investigated. A brittle interfacial reaction layer formed at the Cu/Al interfaces at and above $400^{\circ}C$. The thickness of the reaction layer increased from $12{\mu}m$ at $400^{\circ}C$ to $28{\mu}m$ at $500^{\circ}C$. The stress-strain curves demonstrated that the strength decreased and the ductility increased with heat treatment up to $400^{\circ}C$. The clad metal heat treated at $300^{\circ}C$ with no indication of a reaction layer exhibited an excellent combination of the strength and ductility and no delamination of layers up to final fracture in the tensile testing. Above $400^{\circ}C$, the ductility decreased rasxpidly with little change of strength, reflecting the brittle nature of the intermetallic interlayers. In Cu/Al/Cu clad heat treated above $400^{\circ}C$, periodic parallel cracks perpendicular to the stress axis were observed at the interfacial reaction layer. In-situ optical microscopic observation revealed that cracks were formed in the Cu layer due to the strain concentration in the vicinity of horizontal cracks in the intermetallic layer, promoting the premature fracture of Cu layer. Vertical cracks parallel to the stress axis were also formed at 15% strain at $500^{\circ}C$, leading to the delamination of the Cu and Al layers.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. H. D. Maneshand A. K. Taheri, Mater. Design 24, 617 (2003). https://doi.org/10.1016/S0261-3069(03)00135-3
  2. D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P. K. De, Acta Mater. 50, 587 (2002).
  3. H. D. Manesh and A. K. Taheri, J. Alloys Comp. 361, 138 (2003). https://doi.org/10.1016/S0925-8388(03)00392-X
  4. K. Y. Rhee, W. Y. Han, H. J. Park, and S. S. Kim, Mater. Sci. Eng. A 384, 70 (2004). https://doi.org/10.1016/j.msea.2004.05.051
  5. Y. M. Hwang, H. H. Hso, and H. J. Lee, Int. J. Mech. Sci. 37, 297 (1995). https://doi.org/10.1016/0020-7403(95)93522-8
  6. H. D. Manesh, A. K. Taheri, J. Alloys Compd. 361, 138 (2003). https://doi.org/10.1016/S0925-8388(03)00392-X
  7. A. Yahiro, T. Masui, T. Yoshida, and D. Doi, ISIJ Int. 31, 647 (1991). https://doi.org/10.2355/isijinternational.31.647
  8. Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao, J. Mater. Sci. 46, 2467 (2011). https://doi.org/10.1007/s10853-010-5093-0
  9. H. Matsumoto, S. Watanabe, and S. Hanada, J. Mater. Pro. Tec. 169, 9 (2005). https://doi.org/10.1016/j.jmatprotec.2005.03.005
  10. M. Honarpisheh, M. Asemabadi, and M. Sedighi, Mater. Design 37, 122 (2012). https://doi.org/10.1016/j.matdes.2011.12.045
  11. S. I. Hong and M. A. Hill, Acta Mater. 46, 4111 (1998). https://doi.org/10.1016/S1359-6454(98)00106-2
  12. S. I. Hong and M. A. Hill, Scr. Mater. 44, 2509 (2001). https://doi.org/10.1016/S1359-6462(01)00665-0
  13. Zainul Huda, European Journal of Scientific Research. 26, 549 (2009).
  14. J. Y. Song, I. K. Kim, Y. S. Lee, and S. I. Hong, Korean J. Met. Mater. 49, 910 (2011).
  15. I. K. Kim, J. Y. Song, Y. S. Lee, and S. I. Hong, Korean J. Met. Mater. 4, 664 (2011).
  16. S. I. Hong and C. Laird, Acta metall, mater. 38, 1581 (1990). https://doi.org/10.1016/0956-7151(90)90126-2
  17. J. A. Zimmerman, H. Gao, and F. F. Abraham, Modelling Simul. Mater. Sci. Eng. 8, 103 (2000). https://doi.org/10.1088/0965-0393/8/2/302