Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.2.095

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints  

Kim, Byungwoo (Dept. of Welding & Joining Science Engineering, Chosun University)
Choi, Hyeokgi (Dept. of Welding & Joining Science Engineering, Chosun University)
Jeon, Hyewon (Dept. of Welding & Joining Science Engineering, Chosun University)
Lee, Doyeong (Dept. of Welding & Joining Science Engineering, Chosun University)
Sohn, Yoonchul (Dept. of Welding & Joining Science Engineering, Chosun University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.2, 2021 , pp. 95-103 More about this Journal
Abstract
Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.
Keywords
Sn-58Bi; Ru nanoparticle; composite solder; OSP; ENIG;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Andersson, P.E. Tegehall, D. R. Andersson, G. Wetter, and J. LIu. "Thermal cycling aging effect on the shear strength, microstructure, intermetallic compounds (IMC) and crack initiation and propagation of reflow soldered Sn-3.8 Ag-0.7 Cu and wave soldered Sn-3.5 Ag ceramic chip components", IEEE, Trans. Comp. Packag. Manufac. Tech., 31(2), 331 (2008).
2 Y. C. Sohn "Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint", Metall and Mat Trans A 51, 2905-2914 (2020).   DOI
3 J. Charles, J. J. Kuntz, J. C. Gachon et al. "A thermodynamic assessment of the ruthenium-tin (Ru-Sn) system", J. Phase Equil. 20, 573 (1999).   DOI
4 T.Y. Kang, Y.Y. Xiu, C.Z. Liu, L. Hui, J.J. Wang, and W.P. Tong, "Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect", J. Alloy Compd 509, 1785-1789 (2011).   DOI
5 P.J. Shang, Z.Q. Liu, D.X. Li, and J.K. Shang, "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints", Scr. Mater. 58, 409-412 (2008).   DOI
6 Y. C. Sohn, Jin Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428-2436 (2004).   DOI
7 Moffatt, W.G., "Binary Phase Diagrams Handbook", General Electric Comp., Schenectady, N.Y., (1978).
8 Y. C. Sohn and Jin Yu, "Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold-solder interconnection", J. Mater. Res. 20, 1931-1934 (2005).   DOI
9 J. W. Yoon, W. C. Moon, and S. B. Jung, "Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging", Microelectronic Eng., 83(11-12), 2329 (2006).   DOI
10 J. W. Yoon, and S. B. Jung. "Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5 Ag-0.75 Cu solder and Cu substrate", J. Mater. Sci., 39(13), 4211 (2004).   DOI
11 H. ma and, J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging", J. Mater. Sci., 44(5), 1141 (2009).   DOI
12 I. E. Anderson, "Development of Sn-Ag-Cu and Sn-Ag-CuX alloys for Pb-free electronic solder applications", Lead-Free Electron. Solders., 55 (2006).
13 W. R. Osorio, L. C. ,Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys", J. Alloys Compd., 572, 97 (2013).   DOI
14 T.Laurila, V. Vuorinen, and M. Paulasto-Krockel. "Impurity and alloying effects on interfacial reaction layers in Pb-free soldering", Mater. Sci. Eng. C., 68(1-2), 1 (2010).   DOI
15 J. Shen, Y. Pu, H. Yin, D. Luo, and J. Chen. "Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys", J. Alloys Compd., 614, 63 (2014).   DOI
16 C. Key Chung, Y.J. Chen, W.M. Chen, and C.R. Kao, "Origin and evolution of voids in electroless Ni during soldering reaction", Acta Mater. 60(11), 4586-4593 (2012).   DOI
17 M. Usui, T. Satoh, H. Kimura, S. Tajima, Y. Hayashi, D. Setoyama, and M. Kato. "Effects of thermal aging on Cu nanoparticle/Bi-Sn solder hybrid bonding", Microelectron. Reliab., 78, 93 (2017).   DOI
18 Y. Goh, A. S. M. A. Haseeb, and M. F. M Sabri. "Effects of hydroquinone and gelatin on the electrodeposition of Sn-Bi low temperature Pb-free solder", Electrochim. Acta., 90(15), 265 (2013).   DOI
19 Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, and L. Liu. "Retarding the electromigration effects to the eutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach", J. Alloys Compd., 509(7), 3286 (2011).   DOI
20 S. K. Lin, T. L. Nguyen, S. C. Wu, and Y. H. Wang. "Effective suppression of interfacial intermetallic compound growth between Sn-58 wt.% Bi solders and Cu substrates by minor Ga addition", J. Alloys Compd., 586, 319 (2014).   DOI
21 L. Yang, L. Zhu, L. Zhang, S. Zhou, Y. Xiong, and P. Wu. "Microstructural evolution and IMCs growth behavior of Sn58Bi-0.25 Mo solder joint during aging treatment", Mater. Res. Express., 5(2), 026304 (2018).   DOI
22 W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo. "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", J. Electron. Mater., 37(7), 982 (2008).   DOI
23 K. Tu, and K. Zeng. "Tin-lead (SnPb) solder reaction in flip chip technology", Mater. Sci. Eng. C., 34(1), 1 (2001).   DOI
24 W. I. Seo, M. S. Kim, Y. H. Ko et al. "Growth of intermetallic compounds and brittle fracture behavior of Sn-Ag-Cu/ENIG joint with columnar Ni-P layer", J Mater Sci: Mater Electron 32, 1042-1051 (2021).   DOI