DOI QR코드

DOI QR Code

α-case Interfacial Reaction Behavior of Al2O3 Mold Containing Interstitial and Substitutional Compounds for Titanium Investment Casting

침입형 및 치환형 화합물을 함유한 Ti 정밀주조용 Al2O3 주형의 α-case 계면반응 거동

  • Choi, Bong-Jae (Sungkyunkwan University, School of Advanced Materials Science and Engineering) ;
  • Lee, Seul (Sungkyunkwan University, School of Advanced Materials Science and Engineering) ;
  • Kim, Young-Jig (Sungkyunkwan University, School of Advanced Materials Science and Engineering)
  • 최봉재 (성균관대학교 신소재공학과) ;
  • 이슬 (성균관대학교 신소재공학과) ;
  • 김영직 (성균관대학교 신소재공학과)
  • Received : 2011.04.13
  • Published : 2011.07.25

Abstract

The newly developed ${\alpha}-case$ controlled mold material for Ti investment castings was suggested in this research. The $Al_2O_3$ mold containing interstitial $TiO_2$ and substitutional $Ti_3Al$ was manufactured by the reaction between $Al_2O_3$ and Ti. It is obvious that as the $TiO_2$ and $Ti_3Al$ content in the mold surface were increased, the depth of the interfacial reaction was significantly reduced. In addition, substitutional $Ti_5Si_3$ in the mold surface owing to the reaction between Ti and $SiO_2$ from the binder was effective for ${\alpha}-case$ reduction. Therefore, the ${\alpha}-case$ reduction was accomplished by the diffusion barrier effect of interstitial $TiO_2$, substitutional $Ti_3Al$ and $Ti_5Si_3$.

Keywords

References

  1. F. H. Froes, M. N. Gungor, and M. A. Imam, JOM 59, 28 (2007).
  2. M. J. Donachie, Jr, Titanium A Technical Guide, p.39, ASM International, US (2000).
  3. T. H. Kim, J. H. Lee and S. I. Hong, Kor. J. Met. Mater. 49, 121 (2011).
  4. X. Cui. H. M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura, Met. Mater. Int. 16, 407 (2010). https://doi.org/10.1007/s12540-010-0610-x
  5. C. Leyens and M. Peters, Titanium and Titanium alloys, WILEY-VCH, p.305-330, Germany (2003).
  6. R. L. Saha, T. K. Nandy, R. D. K. Misra, and K. T. Jacob, Bull. Mater. Sci. 12, 481 (1989). https://doi.org/10.1007/BF02744918
  7. C. Frueh, D. R. Poirier, and M. C. Maguire, Metall. Mater. Trans. 28B, 919 (1997).
  8. K. Suzuki, JOM 50, 20 (1998).
  9. E. W. Collings, Titanium Alloys, ASM International, p.1, US (1984).
  10. K. F. Lin and C. C. Lin, J. Mater. Sci. 34, 5899 (1999). https://doi.org/10.1023/A:1004791125373
  11. S. Y. Sung, M. G. Kim, and Y. J. Kim, J. Kor. Inst. Met. & Mater. 41, 557 (2003).
  12. S. Y. Sung and Y. J. Kim, Mater. Sci. Eng. A405, 173 (2005).
  13. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Table, American Chemical Society and American Institute of Physics, United State (1985).
  14. T. I. Bratanich, V. V. Skorokhod, L. I. Kopilova, A. V. Kotko, V. Y. Oliker, and V. F. Gorban, Powder. Metall. Met. Ceramics. 49, 598 (2011). https://doi.org/10.1007/s11106-011-9276-2
  15. Z. Liu and G. Welsch, Metall. Trans. 19A, 1121 (1988).