DOI QR코드

DOI QR Code

초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites

  • 박희섭 (KAIST 신소재공학과,일진다이아몬드(주) 산업기술연구소) ;
  • 류민호 (일진다이아몬드(주) 산업기술연구소) ;
  • 홍순형 (KAIST 신소재공학과)
  • Park, Hee-Sub (Department of Materials Science and Engineering, KAIST,Institute of Industrial Technology, ILJIN Diamond Co., Ltd.) ;
  • Ryoo, Min-Ho (Institute of Industrial Technology, ILJIN Diamond Co., Ltd.) ;
  • Hong, Soon-Hyung (Department of Materials Science and Engineering, KAIST)
  • 발행 : 2009.12.28

초록

Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

키워드

참고문헌

  1. H. T. Hall: Science, 169 (1970) 868 https://doi.org/10.1126/science.169.3948.868
  2. H. D. Stromberg and D. R. Stephens: Am. Ceram. Soc. Bull., 49 (1970) 1030
  3. H. Katzman and W. F. Libby: Science, 172 (1971) 1132 https://doi.org/10.1126/science.172.3988.1132
  4. P. A. Bex and W. I. Wilson: Ind. Diamond Rev., 37 (1977) 10
  5. Y. S. Ko, T. Tsurumi, O. Fukunaga and T. Yano: J. Mater. Sci., 36 (2001) 469 https://doi.org/10.1023/A:1004840915607
  6. J. Qian, G. Voronin, T.W. Zerda, D. He and Y. Zhao: J. Mater. Res., 17(8) (2002) 2153 https://doi.org/10.1557/JMR.2002.0317
  7. G. A. Voronin, T. W. Zerda, J. Qian, Y. Zhao, D. He and S. N. Dub: Dia. Rela. Mater., 12 (2003) 1477 https://doi.org/10.1016/S0925-9635(03)00176-6
  8. Y. Zhao, J. Qian, L. L. Daemen, C. Pantea, J. Zhang, G. A. Voronin and T. W. Zerda: Appl. Phy. Lett., 84(8) (2004) 1356 https://doi.org/10.1063/1.1650556
  9. E. A. Ekimov, S. Gierlotka, E. L. Gromnitskaya, J. A. Kozubowski, B. Palosz, W. Lojkowski and A. M. Naletov: Inorganic Materials, 38(11) (2002) 1117 https://doi.org/10.1023/A:1020910415053

피인용 문헌

  1. Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC) vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.111