• 제목/요약/키워드: Interfacial Reaction

검색결과 404건 처리시간 0.037초

LSGM계 고체산화물 연료전지의 계면안정성을 위한 완층층의 도입 (Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs)

  • 김광년;문주호;손지원;김주선;이해원;이종호;김병국
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.637-644
    • /
    • 2005
  • In order to find a proper buffering material which can prohibit an unwanted interfacial reaction between anode and electrolyte of LSGM-based SOFC, we examined a gadolinium doped ceria and scandium doped zirconia as a candidate. For this examination, we investigated the microstructural and phase stability of the interface under different buffering layer conditions. According to the investigation, ceria based material induced a serious La diffusion out of the LSGM electrolyte resulted in the formation of very resistive $LaSrGa_3O_7$ phase at the interface. On the other hand zirconia based material was directly reacted with LSGM electrolyte and thus produced very resistive reaction products such as $La_2Zr_2O_7,\;Sr_2ZrO_4,\;LaSrGaO_4\;and\;LaSrGa_3O_7$. From this study we found that an improper buffering material induced the higher internal cell resistance rather than an interfacial stability.

3층 Cu/Al/Cu 클래드재의 열처리온도에 따른 변형 및 파단거동 (Effect of Heat Treatment on the Deformation and Fracture Behaviors of 3-ply Cu/Al/Cu Clad Metal)

  • 김인규;하종수;홍순익
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.939-948
    • /
    • 2012
  • A 3-ply clad metal consisting of aluminum and copper was fabricated by roll bonding process and the microstructures and mechanical properties of the roll-bonded and post-roll-bonding heat treated Cu/Al/Cu clad metal were investigated. A brittle interfacial reaction layer formed at the Cu/Al interfaces at and above $400^{\circ}C$. The thickness of the reaction layer increased from $12{\mu}m$ at $400^{\circ}C$ to $28{\mu}m$ at $500^{\circ}C$. The stress-strain curves demonstrated that the strength decreased and the ductility increased with heat treatment up to $400^{\circ}C$. The clad metal heat treated at $300^{\circ}C$ with no indication of a reaction layer exhibited an excellent combination of the strength and ductility and no delamination of layers up to final fracture in the tensile testing. Above $400^{\circ}C$, the ductility decreased rasxpidly with little change of strength, reflecting the brittle nature of the intermetallic interlayers. In Cu/Al/Cu clad heat treated above $400^{\circ}C$, periodic parallel cracks perpendicular to the stress axis were observed at the interfacial reaction layer. In-situ optical microscopic observation revealed that cracks were formed in the Cu layer due to the strain concentration in the vicinity of horizontal cracks in the intermetallic layer, promoting the premature fracture of Cu layer. Vertical cracks parallel to the stress axis were also formed at 15% strain at $500^{\circ}C$, leading to the delamination of the Cu and Al layers.

Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구 (Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints)

  • 김병우;최혁기;전혜원;이도영;손윤철
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.95-103
    • /
    • 2021
  • 대표적인 저온솔더인 Sn-58Bi에 Ru nanoparticles을 첨가하여 Sn-58Bi-xRu 복합솔더를 제작하고 Cu/OSP 및 ENIG 표면처리된 PCB 기판과 반응시켜 계면반응 및 솔더조인트 신뢰성을 분석하였다. Cu/OSP와의 반응에서 형성된 Cu6Sn5 IMC는 Ru 함량에 따른 두께 변화가 거의 없고 100hr aging 후에도 큰 변화없이 고속 전단시험시 솔더 내부로 연성파괴가 발생하였다. ENIG 와의 반응시에는 Ru 함량이 증가함에 따라서 Ni3Sn4 IMC 두께가 감소하는 경향을 보였으며 일부 시편에서 ENIG 특유의 취성파괴 현상이 발견되었다. Ru 원소는 계면 부근에서 발견되지 않아서 계면반응에 크게 관여하지 않는 것으로 판단되며 주로 Bi phase와 함께 존재하는 것으로 분석되고 있는데 어떠한 형태로 두 원소가 공존하고 있는지에 대해서는 추가적인 연구가 필요하다.

액-액 불균일계에서 상이동촉매의 반응속도론 해석 (Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System)

  • 박상욱;문진복;황경선
    • 공업화학
    • /
    • 제5권2호
    • /
    • pp.230-237
    • /
    • 1994
  • Aliquat 336 상이동촉매에 의한 n-butyl acetate의 알칼리 가수분해반응을 액-액 불균일 반응계로 한 반응기구를 준1차반응 모델, 계면반응 모델 및 본체반응 모델로 나타내어 복잡한 액-액 불균일계 반응을 간단히 취급할 수 있었다. 분산교반조를 사용하여 측정한 반응전화율로부터 준1차반응 모델과 계면반응 모델 그리고 평면교반조로부터 본체반응 모델로서 반응기구를 각각 설명할 수 있었으며, 각 모델로부터 구한 반응속도상수는 $25^{\circ}C$에서 각각 $3.1{\times}10^{-4}$, $7.3{\times}10^{-4}$, $6.6m^3/kmol.s$이었다.

  • PDF

$Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구 (A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061)

  • 서상용;안병건;이규용
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

침입형 및 치환형 화합물을 함유한 Ti 정밀주조용 Al2O3 주형의 α-case 계면반응 거동 (α-case Interfacial Reaction Behavior of Al2O3 Mold Containing Interstitial and Substitutional Compounds for Titanium Investment Casting)

  • 최봉재;이슬;김영직
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.577-582
    • /
    • 2011
  • The newly developed ${\alpha}-case$ controlled mold material for Ti investment castings was suggested in this research. The $Al_2O_3$ mold containing interstitial $TiO_2$ and substitutional $Ti_3Al$ was manufactured by the reaction between $Al_2O_3$ and Ti. It is obvious that as the $TiO_2$ and $Ti_3Al$ content in the mold surface were increased, the depth of the interfacial reaction was significantly reduced. In addition, substitutional $Ti_5Si_3$ in the mold surface owing to the reaction between Ti and $SiO_2$ from the binder was effective for ${\alpha}-case$ reduction. Therefore, the ${\alpha}-case$ reduction was accomplished by the diffusion barrier effect of interstitial $TiO_2$, substitutional $Ti_3Al$ and $Ti_5Si_3$.

초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성 (Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites)

  • 박희섭;류민호;홍순형
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성 (Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications)

  • 정귀상;온창민
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.