• Title/Summary/Keyword: Interface shear strength

Search Result 488, Processing Time 0.066 seconds

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors (화학적 영향인자를 고려한 토목섬유-흙 접촉면 동적거동 특성)

  • Park, Innjoon;Kwak, Changwon;Kim, Jaekeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.47-54
    • /
    • 2010
  • Nowadays, geosynthetics for reinforcement and protection are widely applied to the waste landfill site. Current research indicates the potential for progressive failure in geosynthetic-soil system depends on the interface shear strength governed by several intrinsic factors such as moisture, normal stress, chemical, etc. In particular, the effect of the acidity and basicity from the leachate is intensively reviewed to assess the chemical reaction mechanism of interface shear strength under the cyclic loading condition. New multi-purpose interface apparatus(M-PIA) has been manufactured and the cyclic direct shear tests using submerged geosynthetics and soils under the different chemical conditions have been performed, consequently, the thickness of interface and shear stress degradation are verified. The basic schematic of the Disturbed State Concept(DSC) is employed to estimate the shear stress degradation in the interface, then, normalized disturbed function is obtained and analyzed to describe the shear stress degradation of geosynthetic-soil interface with chemical influence factors under dynamic condition.

Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg

  • Mahendran, G.;Balasubramanian, V.;Senthilvelan, T.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.147-160
    • /
    • 2012
  • In the present study, diffusion bonding was carried out between AZ31B magnesium and AA2024 aluminium in the temperature range of $405^{\circ}C$ to $475^{\circ}C$ for 15 min to 85 min and 5MPa to 20 MPa uniaxial loads was applied. Interface quality of the joints was assessed by microhardness and shear testing. Also, the bonding interfaces were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectrometer and XRD. The maximum bonding and shear strength was obtained at $440^{\circ}C$, 12 MPa and 70 min. The maximum hardness values were obtained from the area next to the interface in magnesium side of the joint. The hardness values were found to decrease with increasing distance from the interface in magnesium side while it remained constant in aluminium side. It was seen that the diffusion transition zone near the interface consists of various phases of $MgAl_2O_4$, $Mg_2SiO_4$ and $Al_2SiO_5$.

A COMPARISON OF SHEAR BOND STRENGTH OF VARIOUS ORTHODONTIC ADHESIVES (수종 교정용 접착제의 전단 접착강도 비교)

  • You, Mi-Hee;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.433-445
    • /
    • 1994
  • Bonding of brackets is one of the essential factors for successful orthodontic treatment' so bond strength of orthodontic adhesives are very important. The purposes of this research were to compare shear bond strength of various orthodontic adhesives and to evaluate failure sites. One-hundred twenty extracted human first premolars were prepared for bonding and premolar brackets were bonded to prepared enamel surfaces with Super C Ortho, Mono-$Lok^2$, Transbond, and Super C Ortho after applying Fluorobond. After bonding of brackets, teeth specimens were divided into 3 groups. In group 1 specimens were stored at humidor $37^{\circ}C$ in 1 hour, in group 2 specimens were stored at humidor $37^{\circ}C$ in 24 hours, thermocycled 10 times and in group 3 specimens were stored at humidor $37^{\circ}C$ in 24 hours, thermocycled 1800 times. Then the universal testing machine Instron 6022, Instron Co., U.S.A. was used to test the shear bond strength of brackets to enamel. After debonding, brackets and enamel surfaces were examined under stereoscopic microscope to determine the failure sites The results were as follows : 1. Shear bond strength was significantly highest of using Super C Ortho after applying Fluorobond and Super C Ortho In group 1, was highest of using Super C Ortho in group 2, and was highest of using Mono-$Lok^2$ in group 3. 2. According to time and temperature change, in using Super C Ortho the group 2 had significantly highest strength and group 3 had lowest strength, in using Mono-$Lok^2$ the group 2 and had higher strength than group 1 and in using Super C Ortho after applying Fluorobond shear bond strength decreased constantly, 3. The failure sites were tooth-resin interface in Super C Ortho after applying Fluorobond, Mono $Lok^2$ and Transbond and were at almost same ratio bracket base-resin interface and tooth-resin interface in Super C Orth.

  • PDF

Aging Characteristic of Shear Strength in Micro Solder Bump (마이크로 솔더 범프의 전단강도와 시효 특성)

  • 김경섭;유정희;선용빈
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of microelectronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder b01p and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

Comparison of Shear Strength and Shear Energy for 48Sn-52In Solder Bumps with Variation of Reflow Conditions (리플로우 조건에 따른 Sn-52In 솔더범프의 전단응력과 전단에너지 비교)

  • Choi Jae-Hoon;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.351-357
    • /
    • 2005
  • Comparison of shear strength and shear energy of the 48Sn-52In solder bumps reflowed on Cu UBM were made with variations of reflow temperature from $150^{\circ}C$ to $250^{\circ}C$ and reflow time from 1 min to 20 min to establish an evaluation method for the mechanical reliability of solder bumps. Compared to the shear strength, the shear energy of the Sn-52In solder bumps was much more consistent with the solder reaction behavior and the fracture mode at the Sn-52In/Cu interface, indicating that the bump shear energy can be used as an effective tool to evaluate the mechanical integrity of solder/UBM interface.

  • PDF