Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.5.691

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups  

Tran, Viet-Linh (Department of Civil Engineering, Seoul National University of Science and Technology)
Kim, Jin-Kook (Department of Civil Engineering, Seoul National University of Science and Technology)
Publication Information
Steel and Composite Structures / v.44, no.5, 2022 , pp. 691-705 More about this Journal
Abstract
Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.
Keywords
gradient boosting regression tree; graphic user interface; jaya algorithm; reinforced concrete slender beam; shear strength; web application;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.   DOI
2 Rahal, K.N. and Alrefaei, Y.T. (2017), "Shear strength of longitudinally reinforced recycled aggregate concrete beams", Eng. Struct., 145, 273-282. https://doi.org/10.1155/2021/6652647.   DOI
3 Zhang, H., Nguyen, H., Bui, X.N., Nguyen-Thoi, T., Bui, T.T., Nguyen, N. and Moayedi, H. (2020), "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm", Resources Policy, 66, 101604. https://doi.org/10.1016/j.resourpol.2020.101604.   DOI
4 Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.   DOI
5 Tureyen, A.K. and Frosch, R.J. (2004), "Concrete shear strength: Another perspective", ACI Struct. J., 101, 584-585.
6 Arezoumandi, M., Drury, J., Volz, J.S. and Khayat, K.H. (2015), "Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams", ACI Mater. J. 112, 559-568. https://doi.org/10.14359/51687766.   DOI
7 Biolzi, L., Cattaneo, S. and Mola, F. (2014), "Bending-shear response of self-consolidating and high-performance reinforced concrete beams", 59, 399-410
8 Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integrity, 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.   DOI
9 Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups", ACI Struct. J., 111(5). https://doi.org/10.14359/51686819.   DOI
10 Pradhan, S., Kumar, S., Barai, S.V. (2018), "Shear performance of recycled aggregate concrete beams: An insight for design aspects", Constr. Build. Mater., 178, 593-611. https://doi.org/10.1016/j.conbuildmat.2018.05.022.   DOI
11 Syroka-Korol, E. and Tejchman, J. (2014), "Experimental investigations of size effect in reinforced concrete beams failing by shear", Eng. Struct., 58, 63-78. https://doi.org/10.1016/j.engstruct.2013.10.012.   DOI
12 Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Structures, 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.   DOI
13 Sun, H, Burton H V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33, 101816. https://doi.org/10.1016/j.jobe.2020.101816.   DOI
14 Ahmad, A., Kotsovou, G., Cotsovos, D.M. and Lagaros, N.D. (2018), "Assessing the accuracy of RC design code predictions through the use of artificial neural networks", Int. J. Adv. Struct. Eng., 10, 349-365. https://doi.org/10.1007/s40091-018-0202-4.   DOI
15 Conforti, A., Minelli, F. and Plizzari, G.A. (2017), "Influence of width-to-effective depth ratio on shear strength of reinforced concrete elements without web reinforcement", ACI Struct. J. 114, 995-1006. https://doi.org/10.14359/51689681.   DOI
16 Rahman, J., Ahmed, K.S., Khan, N.I., Islam, K. and Mangalathu, S. (2021), "Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach", Eng. Struct., 233, 111743. https://doi.org/10.1016/j.engstruct.2020.111743.   DOI
17 Sangiorgio, F., Silfwerbrand, J. and Mancini, G. (2014), "Assessment of the ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups for investigations on the shear capacity scatter", Athens J. Technol. Eng., 1, 181-198. https://doi.org/10.30958/ajte.1-3-2.   DOI
18 Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32, 644-657. https://doi.org/10.1139/l05-003.   DOI
19 Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39, 319-335. https://doi.org/10.12989/scs.2021.39.3.319.   DOI
20 Zsutty, B. (1968), "Beam shear strength prediction by analysis of existing data", ACI J. Proc., 65, 943-951. https://doi.org/10.14359/7526.   DOI
21 Nguyen-Sy, T., Wakim, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Construct. Build. Mater., 260, 119757. https://doi.org/10.1016/j.conbuildmat.2020.119757.   DOI
22 Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", JVC/J. Vib. Control, 22, 3986-3997. https://doi.org/10.1177/1077546314568172.   DOI
23 Elbaz, K., Shen, S.L., Zhou, A., Yuan, D.J. and Xu, Y.S. (2019), "Optimization of EPB shield performance with adaptive neurofuzzy inference system and genetic algorithm", Appl. Sci., 9(4), 780. https://doi.org/10.3390/app9040780.   DOI
24 Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Meas. J. Int. Meas Confed., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.   DOI
25 Gao, X. and Lin, C. (2021), "Prediction model of the failure mode of beam-column joints using machine learning methods", Eng. Fail. Anal., 120, 105072. https://doi.org/10.1016/j.engfailanal.2020.105072.   DOI
26 He, Z.Q., Liu, Z. and John Ma, Z. (2016), "Simplified shear design of slender reinforced concrete beams with stirrups", J. Struct. Eng., 142, 06015003. https://doi.org/10.1061/(asce)st.1943-541x.0001394.   DOI
27 Ignjatovic, I.S., Marinkovic, S.B. and Tosic, N. (2017), "Shear behaviour of recycled aggregate concrete beams with and without shear reinforcement", Eng. Struct., 141, 386-401. https://doi.org/10.1016/j.engstruct.2017.03.026.   DOI
28 Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30, 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008.   DOI
29 Knaack, A.M. and Kurama, Y.C. (2015), "Behavior of reinforced concrete beams with recycled concrete coarse aggregates", J. Struct. Eng., 141, https://doi.org/10.1061/(asce)st.1943541x.0001118.   DOI
30 Nguyen, D.D., Tran, V.L., Ha, D.H., Nguyen, V.Q. and Lee, T.H. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.   DOI
31 Birgisson, S.R. (2011), Shear Resistance of Reinforced Concrete, Thesis in Civil Engineering BSc
32 Chou, J.S., Ngo, N.T. and Pham, A.D. (2016), "Shear strength prediction in reinforced concrete deep beams using natureinspired metaheuristic support vector regression", J. Comput. Civil Eng., 30, 04015002. https://doi.org/10.1061/(asce)cp.1943-5487.0000466.   DOI
33 Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2021), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICAXGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0.   DOI
34 EC2 (2011), Eurocode 2: Design of concrete structures - Part 1-1: General Rules and Rules for Buildings.
35 Feng, Y., Wang, D., Yin, Y., Li, Z. and Hu, Z. (2020), "An XGBoostbased casualty prediction method for terrorist attacks", Complex Intell. Syst., 6(3), 721-740. https://doi.org/10.1007/s40747-020-00173-0.   DOI
36 Lundberg, S.M. and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Adv. Neural Inform. Processing Syst., 30.
37 Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Ann. Stat., 29, 1189-1232.   DOI
38 Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014a), "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement.", Autom. Constr., 42, 112-121. https://doi.org/10.1016/j.autcon.2014.02.007.   DOI
39 Luat, N.V., Han, S.W. and Lee, K. (2021), "Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns", Compos. Struct., 278, 114733. https://doi.org/10.1016/j.compstruct.2021.114733.   DOI
40 Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Datadriven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331.   DOI
41 Mangalathu, S. and Jeon, J.S. (2019), "Machine learning-based failure mode recognition of circular reinforced concrete bridge columns: Comparative study", J. Struct. Eng., 145, 04019104. https://doi.org/10.1061/(asce)st.1943-541x.0002402.   DOI
42 Mohammed, H.R.M. and Ismail, S. (2021), "Random forest versus support vector machine models' applicability for predicting beam shear strength", Complexity, https://doi.org/10.1155/2021/9978409.   DOI
43 Molnar, C. (2021), Interpretable Machine Learning. https://doi.org/10.1201/9780367816377-16.   DOI
44 Qi, C., Fourie, A., Ma, G., Tang, X. and Du, X. (2018), "Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability", J. Comput. Civil Eng., 32(2), 04017086. https://doi.org/10.1061/(asce)cp.1943-5487.0000737.   DOI
45 Niwa, J., Yamada, K., Yokozawa, K. and Okamura, H. (1986), "Revaluation of the equation for shear strength of reinforced concrete beams without web reinforcement", Doboku Gakkai Ronbunshu, 1986(372), 167-176. https://doi.org/10.2208/jscej.1986.372_167.   DOI
46 Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35, 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.   DOI
47 Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raftpile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4.   DOI
48 Golafshani, E.M. and Ashour, A. (2016), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. https://doi.org/10.1016/j.advengsoft.2016.02.007.   DOI
49 Gandomi, A.H., Mohammadzadeh, S.D, Perez-Ordonez, J.L. and Alavi, A.H. (2014b), "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups", Appl. Soft. Comput. J., 19, 112-120. https://doi.org/10.1016/j.asoc.2014.02.007.   DOI
50 Olalusi, O.B. and Awoyera, P.O. (2021), "Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning", Eng. Struct., 227, https://doi.org/10.1016/j.engstruct.2020.111470.   DOI
51 Rahal, K.N. and Alrefaei, Y.T. (2018), "Shear strength of recycled aggregate concrete beams containing stirrups", Constr. Build. Mater., 191, 866-876. https://doi.org/10.1016/j.conbuildmat.2018.10.023.   DOI
52 Johnson, P.M., Couture, A. and Nicolet, R. (2007), Commision of Inquirey into the Collapse of a Portion of the de la Concorde Overpass.
53 Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: Prediction based on ANNs", Steel Compos. Struct., 36, 493-506. https://doi.org/10.12989/scs.2020.36.5.493.   DOI
54 Hu, B. and Wu, Y.F. (2018), "Effect of shear span-to-depth ratio on shear strength components of RC beams", Eng. Struct., 168, 770-783. https://doi.org/10.1016/j.engstruct.2018.05.017.   DOI
55 Hu, B. and Wu, Y.F. (2017), "Quantification of shear cracking in reinforced concrete beams", Eng. Struct., 147, 666-678. https://doi.org/10.1016/j.engstruct.2017.06.035.   DOI
56 Jumaa, G.B. and Yousif, A.R. (2018), "Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis", Adv. Civil Eng., https://doi.org/10.1155/2018/5157824   DOI
57 Karina, C.N.N., Chun, P. jo Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24, 635-641. https://doi.org/10.12989/scs.2017.24.5.635.   DOI
58 Kaveh, A., Dadras Eslamlou, A. and Mahdipour Moghani, R. (2021), "Shear strength prediction of FRP-reinforced concrete beams using an extreme gradient boosting framework", Period Polytech Civil Eng., 1-12. https://doi.org/10.3311/ppci.18901.   DOI
59 Katkhuda, H. and Shatarat, N. (2016), "Shear behavior of reinforced concrete beams using treated recycled concrete aggregate", Constr. Build. Mater., 125, 63-71. https://doi.org/10.1016/j.conbuildmat.2016.08.034.   DOI
60 Kim, J.K. and Park, Y.D. (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93, 213-222.
61 Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33, 181-194. https://doi.org/10.12989/scs.2019.33.2.181.   DOI
62 ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACIA 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI.
63 Tran, V.L. and Kim, S.E. (2021), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Comput., 37, 2303-2327. https://doi.org/10.1007/s00366-020-00944-w.   DOI
64 Tran, V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.   DOI
65 Alghazali, H.H. and Myers, J.J. (2017), "Shear behavior of full-scale high volume fly ash-self consolidating concrete (HVFA-SCC) beams", Constr. Build. Mater., 157, 161-171. https://doi.org/10.1016/j.conbuildmat.2017.09.061.   DOI
66 Venkata Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7, 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.   DOI
67 Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, https://doi.org/10.1016/j.compstruct.2020.113505.   DOI