• 제목/요약/키워드: Integral inequalities

검색결과 177건 처리시간 0.023초

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES ASSOCIATED WITH PATHWAY FRACTIONAL INTEGRAL OPERATORS

  • Agarwal, Praveen;Choi, Junesang
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.181-193
    • /
    • 2016
  • During the past two decades or so, fractional integral inequalities have proved to be one of the most powerful and far-reaching tools for the development of many branches of pure and applied mathematics. Very recently, many authors have presented some generalized inequalities involving the fractional integral operators. Here, using the pathway fractional integral operator, we give some presumably new and potentially useful fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang;Agarwal, Praveen
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.283-291
    • /
    • 2014
  • A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

ORLICZ-TYPE INTEGRAL INEQUALITIES FOR OPERATORS

  • Neugebauer, C.J.
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.163-176
    • /
    • 2001
  • We examine Orlicz-type integral inequalities for operators and obtain as a corollary a characterization of such inequalities for the Hardy-Littlewood maximal operator extending the well-known L(sup)p-norm inequalities.

  • PDF

ON SOME GRONWALL TYPE INEQUALITIES FOR A SYSTEM INTEGRAL EQUATION

  • KIM, BYUNG-IL
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.789-805
    • /
    • 2005
  • In this paper we consider analogous of Gronwall-type inequalities involving iterated integrals in the inequality (1.2) for functions when the function u in the right-hand side of the in­equality (1.2) is replaced by the function $u^P$ for some p. These inequalities are effective tools in the study of a system of an integral equation. We also provide some integral inequalities involving iterated integrals.

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

On Some Fractional Quadratic Integral Inequalities

  • El-Sayed, Ahmed M.A.;Hashem, Hind H.G.
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.211-222
    • /
    • 2020
  • Integral inequalities provide a very useful and handy tool for the study of qualitative as well as quantitative properties of solutions of differential and integral equations. The main object of this work is to generalize some integral inequalities of quadratic type not only for integer order but also for arbitrary (fractional) order. We also study some inequalities of Pachpatte type.

ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED INTEGRAL OPERATOR

  • Farid, Ghulam;Mehboob, Yasir
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.227-237
    • /
    • 2021
  • Opial inequality and its consequences are useful in establishing existence and uniqueness of solutions of initial and boundary value problems for differential and difference equations. In this paper we analyze Opial-type inequalities for convex functions. We have studied different versions of these inequalities for a generalized integral operator. Further difference of Opial-type inequalities are utilized to obtain generalized mean value theorems, which further produce various interesting derivations for fractional and conformable integral operators.

SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL

  • Valdes, Juan E. Napoles
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.587-596
    • /
    • 2021
  • In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.