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ORLICZ-TYPE INTEGRAL
INEQUALITIES FOR OPERATORS

C. J. NEUGEBAUER

ABSTRACT. We examine Orlicz-type integral inequalities for operators
and obtain as a corollary a characterization of such inequalities for
the Hardy-Littlewood maximal operator extending the well-known LP-
norm inequalities.

1. Introductibn

Let f — T'f be an operator and for 7 = 1,2, -, let
Df=T...
TV f=T...Tf
j times
be the j-times iterated operator T. The problem which we will address in

this note is to find conditions on T and conditions on &, ¥ : Ry — R, such
that

) | e <e [ weif

with the constant ¢; independent of f. Conversely, we will also examine
what the inequality (1) implies about ® and .
In particular, if T = M, the Hardy-Littlewood maximal operator

1
Ms@) = swp g [ 15O

our results lead to a characterization of (1) with T = M. The case T'= M
and j = 1 has been studied extensively when @ = ¥ is non-decreasing [1].
In fact
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if and only if

< , 0<s <o

¢ s
In the general case, ® # ¥, the latest attempt to characterize (2) with ¥
in the right side is in [4]. However in [4] the well-known LP-inequalities for
M are excluded. Our results will restore the LP-inequalities, and in doing
this we were led to study general integral inequalities (1).

In section 2 we examine conditions on ® and ¥ which imply (1) and in
section 3 we study when these conditions on ® and ¥ are implied by (1).
All of this will give us a characterization of (1) with T’ = M. Section 4 is
devoted to Llog L and exp(L) inequalities of 7', and in section 5 we outline
similar results for the operator T,.f = [T{|f|")]/", » > 0.

]s d®(t) < c®(cs)
0

2. Integral inequalities

We will assume that ® and ¥ can be written as
¢

B(t) = fﬂ “a(s)ds, B(1) = /0 b(s) ds,

where a,b : R. — R.. Our results, as in [4], will be expressed in terms of
a and b.

Our first theorem deals with an operator T satisfying the following dis-
tributional inequality:

c{] o0
3) s> < S [ 10> iae

where ¢g > 1 is independent of A > 0 and f.

REMARK. If T is sublinear, then (3) holds if and only if T is weak-type
(1,1) and (oc0,00) [3, p.91]. In particular, M satisfies (3). In Theorem 2
below we.will see another characterization of (3).

We need a version of (3) for 7)) and this is the content of Lemma 1.

LEMMA 1. If T satisfies (3), then

J ¢ = (s
(@ KTt )fl>A}|Sm1\/cgl{|fl>s}llog’ 1(%) ds

forj=1,2,---.



Orlicz-type integral inequalities for operators 165

Proof. The proof is by induction. The case 7 = 1 is (3). Assume (4)
holds up to j — 1, and let ¢ = ¢3. Then

T f| > ) < © / T T 1 > s)jds

s(J—fﬁfA [/631|{|f|>t}|1ogﬁ (dl)dtds

_ F%[\/ [\/C 1t|{|f|>t}|glogj_2( )dsdt.

The integral in s is ;25 log? ™! (%) O

The next theorem gives a characterization of condition (3) in terms of
the integral inequality (1).

THEOREM 2. The following are equivalent for an operator f — T f.
(A) The integral inequality (1) holds for every a,b: R, — R, satisfving

3 .
(5) / @ logJ_l (f) dt S C’b(C”S),O S 8§ < 0.
o & t

(B) T satisfies condition (3}.

REMARK. It is easy to verify that the left side of (5) is a j-times iterated

integral:
& 1 Sj_l 1
(j—l)!f ——/ R ()dtdsl -ds;_1.
0 Si-1Jo 51

Proof. (B)=(A). From Lemma 1

[ aros) = / THITD I > eyt

SCf ““)f |{|f|>s}|10g7‘1( ' )ddt
c:".s '
_cJ]; {ifl > s }1/ a(t lg"l( )dtds

f 111> s}ibtecgapds = 0 | (el
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Since ¢; = ¢}/{j — 1)!, the constant C; = ¢'/(<"(j — 1)!).
(A)=>(B). First we show that (5) implies

/ ?iii)dt < 'b(ces),0 € s < 0.
0
Simply note that the integral on the left is
alt), ,.,qes “alt), ;_q/€s
< —_L J b < oA hid < o " )
_/ﬂ ; log (t)dt,_./; : log? (t)dt_cb(ces)
Thus (A) implies (1) with 7 =1, i.e.,

L= [T Ts> Matar<e | Il > AYb()dr = R,
0 0

whenever a,b satisfy (5) with j = 1. For 0 < Ap < oo and h > 0, let

a(A) = £X[ro,ro+r](A) and define

0, 0<s< X
b(s) = /s a(t_t)dt = %log(s/)\o), Ao <s<A+h
0 %logéﬂl\’g—h, s> Ao+ h.
rI-‘hen L proth
L= [ WA > AYax— 1T >

as h — 0. The right side

Aoth
R=cr [\ el > A log O/ d0)ax

L. [lo+h\ [
+c—10g( ot )/ Helf] > AHdA.
R o )\

When h — 0, the first term goes to 0 and the second term goes to
f;: |{c|f| > A}| dA. Hence

2

C (e o]
HITA1> M) < 5 / 101> sHas

This is (3) with constant ¢?.
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REMARKS. (i) In (A)=(B) we have shown that condition (5) implijes
the same condition with j = 1. The converse is not true as a(t) = log™ ¢
and b(s) = f; Eﬁldt shows. However, if @ = b and (5) holds for j = 1, then
it also holds for j=2,3,---. This can be seen from the Remark after the
statement of Theorem 2. (ii) This is the special case j = 1 of Theorem 2.
If T satisfies condition (3) with constant cg, and if

f @dt <b(c"s), 0<s <o,
0

then

[ ewrs<S [ wealn.

Before we examine to what extent (1) implies (5) it will be useful to
make an observation. Let us assume that T satisfies the following reverse
weak-type inequality:

c

(6 WL G R

with ¢ independent of A > 0 and f.
Again we need a version of (6) for TU) and the next two lemmas deal
with this.

LEMMA 3. Assume T satisfies (6) and 0 < k < oo. Then there exists
0 < e < oo such that

c/{m»} it AST [{izt"fr>A}l flloe”

Proof. Let ®(t) = 0,0 < t < A, and = tlog®(t/A),t > A. Then
®(t) = f[: a(s)ds, where a(s) = 0,0 < s < A, and = log*(s/A\)+klog*~1(s/X),
s > A Let now b(s) = f7 2ds. Then b(s) = 0,0 < s < A, and is
> cloghtl(s/A), s > A Replace in (6) A by s, multiply by a(s) and inte-
grate in s from A to oc. Interchange the order of integration to obtain the
inequality. |
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LEMMA 4. Assume T satisfies (6). Then there exists 0 < ¢; < oc such
that

fad . .
N GO RS
{If1>A}
for j =1,2,--.
Proof. (6) gives us
, C i —
{roas =S [ ey
(ITU-Df>A}
and by Lemma 3 the last integral is
~2
> 01/ |TV=2 f| log (M)
(TU=2 > A
2-~q—g/ lﬂms‘leig- 0
{1£1>2} A

THEOREM 5. Assume T satisfies (6). Ifa : R+ — Ry and b(s) =
N %““) log’ ™" (£) dt, then

. (%)
o[ uam< [ eqros,

where as before ®(t) = fot a(s)ds.

Proof. Multiply the inequality in Lemma 4 by e()) and integrate in A
from 0 to co. The right side is what we want, and the left side is obtained
by an interchange of the order of integration. O

COROLLARY 6. Assume T satisfies both condition (3) and (6). If a,b
are as in Theorem 5 and ®(t) = f(f a(s)ds, (1) = fot b(s)ds, then

c ) ‘
[ e < [ ersmse | e

Proof. The left side is Theorem 5 and the right side is Theorem 2. [0

REMARK. (i) The Corollary is especially interesting in the case where
the left and right sides are essentially the same. An example is a(t) =
t* a > 0. Other examples will be examined in section 4. (ii) An example
of an operator satisfying both (3) and (6) is M as we shall point out in the
next section.
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3. (1) implies (5)

For this implication we need to assume that the function b : Ry — Ry
satisfies (i) b{t) > 0,t > 0, and (ii) b is quasi-increasing , i.e., there is a
constant 0 < ¢y < oo such that b(t'} < epb{ept”’) for 0 < ¢/ < ¢,

REMARK. In [4] b(t) was assumed to be positive for { > 0 thus not
allowing b(t) = t*,a > 0. (ii} is the same as in [4].

THEOREM 7. Assume a,b: Ry — R. with b satisfying (i} and (ii). If T
satisfies the condition (6), then the integral inequality (1) implies (5).

Proof. We deny (5) and have then 0 < s < 0o such that
S : ]
f At) i (fﬁ) dt > 2b(2%ksy), k= 1,2,--- .
o & :
Let {Q} be a disjoint collection of cubes with
1
Let 0 < ¢z < o0 be given. We claim that there is f : R® — R, such that

/ ¥(cof) < o0 and f B(TD f]) = .
n BR"
Define .
f(z) = ™ > 2sexo, (x).
Then

' 1
/I;n V(caf) = Z/Qk U(eaf) = D W(2Fs)|Qx| =Y 5% < 00

Next, by Lemma 4,

[ e = [T 1r@ 51> Aair >
Rn 0

c/ooo (/{.mw\} logj_1 (-J:%—)) d:t:) EL%d})\ =
cfkn f(a:)fof(m} @mg’*l (@) didzr =

2k8k/f_‘2 k
c k a(A) . i1 [27s
A £ °k >
p y 25y (fo o8 o dA | Qx| >
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where kg > c3 is chosen so large that 2% > ¢;. Since b is quasi-increasing
we see that

2ksk
T(2Fsy) = / b(s)ds < cob(cg2¥sk)2"% 4.
0

Hence

Z 2kk3k)
%
2 >k blco2%sk)

since for k > c3, co2ks, < (k2ksk)/c0, from which we get b(co2Fsi) <
cob(k2Fsy). O

REMARK. The proof of Theorem 4 is along the lines of [4](see also {1,
p.14]).

Theorems 2 and 7 imply the following characterization of (1) for T' = M,
the Hardy-Littlewood maximal operator.

THEOREM 8. Assume a,b : Ry — Ry with b satisfying (i) and (ii).
Then

[ awn<q [ vl
if and only if

/t; a(t) ) log?~ (%)'dt < 'b(cs),0 < s < 0.

Proof. Since M is sublinear, weak-type (1,1), and {oc, o), M satisfies
the condition (3)[3, p.91]. Hence Theorem 2 gives the sufficiency. For the
necessity, simply observe that M also satisfies the condition (6). For f €
L'(R™), this follows immediately from a Calderon-Zygmund decomposition
at height A [2, p.23]. For general f € L} (R"), approximate by fy(x) =

f@)xqjz1<ny()- [

4. LlogL and exp(L) inequalities

In this section we will present some more examples for which the left
and right sides in Corollary 6 are essentially the same. This leads then to
a characterization for fp. ®(|TY f]) to be finite.

For the next lemma it is useful to use the notation f(s) ~ g(s) on E
to mean: there are constants 0 < ¢ < C < o0 such that ¢ < f(s)/g(s) <
C,se E.
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LEMMA 9. For 0 < k < co and j a positive integer, let

o) = [ G g ()

Then (i) ¢(s) ~ s* on [0,1] and (ii) $(s) ~ log" (1 + s) on [1,00).

Proof. (i) This follows from the fact that ¢(s) can be written as a j-
times iterated integral of {log"(1 + #))/t (Remark after Theorem 2) and
log(1+t) ~ t on [0,1]. For (ii) simply note that ¢{s) > 0 and continuous
for s > 1. Thus all we have to verify is that ¢(s)/log"t (1 +s) — L as
s — oo and 0 < L < oo. This follows from a j-times repeated application
of L’Hépital’s rule. |

Let for 0 <k <ocand j=1,2,---,

Lo — k+1 1 k+3 1 \
() /{mg} A [{W} |Fllog" (1 + £

Kis($) = [ 119 fog" 0+ 191,

THEOREM 10. Let 0 < k < oo. If T satisfies the conditions (3) and (6),
then there are constants 0 < cx; < Cy; < oo such that

erj i (f) € K (f) < CiyLii (f)-

Proof. Let ®(t) = tlog®(1+t). Then &(¢) = fat a(s)ds, where

as) = logk(l + s} + llf:s logkﬁl(l + s).
Let b(s) = [ 2% log?~! (£) dt. By Corollary 6,

[ @@ < [ 10segta+rOsy <o [ welsn,

where ¥(t) = fot b(s)ds and where we may take C' > 1. By Lemma 9 the

left side is
>e ( ] F1FH 4 f £ log" (1 + nfn) .
{1 fI<1} {IfI>1}
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Again from Lemma 9 we see that ¥(t) ~ t**1 on [0, 1] and ¥(t) ~ tlog" ™ (14
t) on [1,00). Since for C > 1, log(1 + Ct) < C'log(1 + t), the right side is
< C" fpn B f1) < C"Lig(f) O

The k = 0 case reads as follows:

THEOREM 11. Assume T satisfies the conditions (3) and (6). Then there
are constants 0 < ¢; < Cj < 0o and there is a constant 0 < ¢g < 1 such
that

& [ fllog iflog0 415D < [y,
{Ifl=1} {|TE) f|=1}
<c 1| log?™ ('ﬂ) (1+m).
{|f1>co} Cp

Proof. Let a(t) = X[1,00)(t). Then ®(t) = fo s)ds =0,0<t <1, and
—t—1,t>1 It b(s) = [ % log/~? (2) dt, then b(s) =0,0 < s < 1, and
= (log’ 5)/4,s > 1. Hence from Corollary 6

[ 1w < |

(1T f|>1)

(ros-n<c [ v,

where again ¥(t) = fo s)ds. Add |{|TY f| > 1} to the inequality and
let L be the left side and R the right side. By Lemma 4,

LZc(/ |f|Tog? |f|+/ |f1log” ! Ifl)
{1121} {14121}

c f \fl1og ™ |£1(1 + log | 1)
{{f1=1}

v

>c / 1] logi 1 [Flog(1 + | £])-
{Ifl=1}

By Lemma 1,

rec([ weinr 70> How (5) )



Orlicz-type integral inequalities for operators 173

for some 0 < ¢ < 1. Note that ¥(s) =0,0 <s < land =571 [’ log’ ¢dt <
cslog’ s,s > 1. Hence

[ ¥(C|f) < C |10 (CI 1]
" {|fi>1/C}

If we set ®;(s) = [ log’™' (£)dt for s > ¢’ and = 0 for 0 < s < ¢, then
the second 1ntegra,1 in Ris

[, 10> s = [0 > = [ a0

Since &;(s) < slog’ ~(s/c'),s > ¢, we see that

/:0 {|f] > s}|d@;(s) < /{mw} £l log"! (|f|)

Let now ¢y = min(1/C,c’). Then

REC Loy 192 (5) (100 (5)

Since 1 + log s < 2log(1 + s),s > 0, the proof is complete. |

REMARKS. (i} If T only satisfies condition (6), then in Theorems 10
and 11 we only get the left inequality, whereas if T only satisfies condition
(3) we get only the right inequality. (ii) Since M satisfies both (3) and
(6), Theorems 10 and 11 are valid for T = M, and for j = 1 are the
R"- versions of the well-known fact: if B is a finite ball and & > 0, then
Mflogh(1 + Mf) € LY(B) if and only if |f|log® (1 + {f]) € LY(B) [2,
p.23].

The set-up for the exp(L) inequalities is the following: a : [1,00) — Ry,
b:Ry — Ry, &(t) = f{ a(s)ds, and U(t) = [ b(s)ds.

THEOREM 12. If
Ea a'(t) r r
—dt < <
(*) ‘/1 logtdt_Cb(c s), 0<s< oo,

and if T satisfies condition (3) with constant cg, then

foaem <G [ walm).
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Proof. The substitution ¢ = e* in () gives
8 U U
/ mdu < 'b(c’s).
0 u

Hence from Remark (ii) after Theorem 2,
C’ I
,(Tf) < — [ ¥("elfI),
R™ ! Jgn

where $.(t) = fo et)etdy = fft a(s)ds = d{et). O

We will now briefly discuss two examples illustrating- Theorem 12. In
both examples we assume that 7" satisfies condition (3) with constant cp.
(I) If 1 < p < o0, then

p
L=y salf ] o (enoay)
" {1£1€1/e0l} {If1>1/co}

Let a(t) = (t—1)7~1,¢ > 1, and let b(s) = [ Lt;Ldt The left side is

what we want, and for the right side note ﬁrst that b(s) < ¢,s7~ lo<s<l,
and b(s) < ¢, (e® —1)?,1 < s < co. This can be seen by showmg that

lim b(s)

. b(s)
o sp—l = 15 llm

s—oo (€8 — 1)P

= 0.

From this we see that ¥(t) < ¢,t?/p,0 <t <1, and for ¢ > 1,

i
T(t) < c;,/p—i-c;,’/ (e — 1)"ds.
1 ~

Since f:(es — 1)?ds/(et —1)P — 1/past — oo, the last integral is < ¢}’ (e*
1)P. Consequently, ¥(t) < c,(ef — 1)P,¢ > 1 for some constant c,.
(IT) There is a version of the inequality in (I) for 0 < p <1 and it reads

as follows:
f,, (eTfl - 1)p_1 (ein|(|Tf| 1)+ 1)

< cp{/ lfi”+1+/ (e°°'f| - 1)”}.
{ifI£1/co} {lf1>1/co}
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To obtain this inequality we let a(t) = (t — 1)P~llogt,t > 1, and

b(s) = /1 "t = %(es — 1.

Since (e* — 1)P < ¢,s” on [0,1], we see that W(t) < c,t** on [0,1], and for
t > 1, ¥(t) < ¢,(e! —1)? as in (I) above. This gives us the right side of the
inequality. For the left side, since p — 1 < 0, ®(t) > (¢t — 1)P~1 ff log s ds
= (t -1 1(tlogt —t +1).

5. The operator T,

For 0 < 7 < oo let Th. f(2) = [T(|f")()]V/7, and let T2 f = [TG(| £]7)]V/7
be the operator T, j-times iterated. Theorem 2 for T reads as follows:

THEOREM 13. Assume that T satisfies condition (3) and that

7 fos Ut) it (%) gt < ) oo

tr sr—l

If ®(t) = [ a(s)ds and U(t) = [, b(s)ds, then

® W(TOS) < e [ Fenls,

R

Proof. The reader will have no difficulty to adapt the proof of Theorem
2, (B)=(A), to T, O

REMARK. The version of Theorem 2, (A)=>(B), for T\ reads as follows:
If (8) holds whenever a, b : Ry — R satisfies (7), then T satisfies condition
(3) for non-negative functions. The proof is the same by first reducing (7)

to j = 1, and then letting a(A) = £X[xr,.20+h](A), and b(s) = s~} os %@dt'

THEOREM 14. Assume a,b: R, — R. with b satisfying (i) and (ii) of
section 3. Let ® and ¥ be as in Theorem 13. If T satisfies the condition
(6) and if (8) holds, then we have (7).
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Proof. With the choice of

1
Q%] = kTG (2 5, )
the proof is, apart from obvious modifications, the same as the proof of
Theorem 7. O

Since the Hardy-Littlewood maximal operator satisfies the conditions
(3) and (6) we have:

CoroLLARY 15. If a,b : Ry — Ry with b satisfying (i) and (i) of
section 3. If & and ¥ are as in Theorem 12, then ‘

f (M) < ey /R (s f)
if and only if

“alt), ;. 1/s b(c"s)
— 7 - < —_—
fo = log (t)dt_ T 0< s <o,

s
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