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Abstract. Integral inequalities provide a very useful and handy tool for the study of

qualitative as well as quantitative properties of solutions of differential and integral equa-

tions. The main object of this work is to generalize some integral inequalities of quadratic

type not only for integer order but also for arbitrary (fractional) order. We also study

some inequalities of Pachpatte type.

1. Introduction and Preliminaries

In the theory of differential and integral equations, Gronwall’s lemma has been
widely used in various applications since its first appearance in the article by Bell-
man in 1943. In this article the author gave a fundamental lemma, known as
Gronwall-Bellman Lemma, which is used to study the stability and asymptotic be-
havior of solutions of differential equations. Gronwall’s lemma has seen several
generalizations to various forms [3, 11, 28].

The literature on these inequalities and their applications is vast; see [1, 2, 4]
and the references given therein [19, 20, 23]. In addition, as the theory of calculus
on time scales has developed over the last few years, some Gronwall-type integral
inequalities on time scales have been established by many authors [17, 21, 24].

In this work, we shall study some fractional integral inequalities which can be
used to prove the uniqueness of solutions for differential and integral equations of
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fractional-order. These inequalities are similar to Bellman-Gronwall type inequali-
ties which play a fundamental role in the qualitative as well as quantitative study
of differential equations.

Let L1 = L1[a, b] be the class of Lebesgue integrable functions on [a, b] with the
standard norm.

Now, we shall introduce the definitions of the fractional-order integral operators
(see [18, 25, 26, 27]). Let β be a positive real number.

Definition 1.1. The left-sided fractional integral of order β of the function f is
defined on [a, b] by

(1.1) Iβa+f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds, t > a

and when a = 0, we have Iβ0+f(t), t > 0.

Definition 1.2. The right-sided fractional integral of order β of the function f is
defined on [a, b] by

(1.2) Iβb−f(t) =

∫ b

t

(s− t)β−1

Γ(β)
f(s) ds, t < b

and when b = 0, we have Iβ0−f(t), t < 0.

For further properties of fractional calculus see [18, 25, 26, 27].

2. Quadratic Integral Inequalities

The existence of solutions of nonlinear quadratic integral equations and some
properties of their solutions have been well studied recently (see [5, 6, 7, 8, 9, 10]
and [12, 13, 14, 15, 16]).

Let α, β > 0. The existence of solutions of the quadratic integral equation of
arbitrary (fractional) orders α and β

(2.1) x(t) = h(t) + Iαa+ f(t, x(t)) Iβa+ g(t, x(t)), t > a

have been studied in [16] and [14] under the following assumptions.

(i) The functions f, g : [a, b] × R+ → R+ satisfy the Carathèodory condition
(i.e. are measurable in t for all x ∈ R+ and continuous in x for all t ∈ [a, b]).
Moreover, there exist two functions m1,m2 ∈ L1, and a positive constant k
such that

|f(t, x)| ≤ m1(t) + k x(t), |g(t, x)| ≤ m2(t), ∀ (t, x) ∈ [a, b] × R+.

(ii) There exists a positive constant M2 such that Iγa+m2(t) ≤M2, γ < β.

(iii) There exists a positive constant M1 such that Iσa+m1(t) ≤M1, σ < α.
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(iv) h ∈ L1.

Now, consider the nonlinear quadratic integral inequality of fractional orders

(2.2) x(t) ≤ h(t) + Iαa+ f(t, x(t)) Iβa+ g(t, x(t)), t > a, α, β > 0

Theorem 2.1. Let assumptions (i)–(iv) be satisfied. Let x(t) ∈ L1 and satisfies

inequality (2.2) for almost all t ∈ [a, b]. If kM2b
α+β−γ

Γ(β−γ+1)Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(
k M2 b

β−γ

Γ(β − γ + 1)
Iαa+)n

[
h(t) +

M1 M2 b
β−γ+α−σ

Γ(β − γ + 1)Γ(α− σ + 1)

]
.

Proof. Using assumptions (i)-(iv) and inequality (2.2), we have

x(t) ≤ h(t) + Iαa+ (m1(t) + k x(t)).Iβa+ m2(t), t > a, α, β > 0

x(t) ≤ h(t) + Iα−σa+ Iσa+m1(t).Iβ−γa+ Iγa+m2(t) + k Iαa+x(t).Iβ−γa+ Iγa+m2(t),

x(t) ≤ h(t) +
M1M2b

β−γ+α−σ

Γ(β − γ + 1)Γ(α− σ + 1)
+

kM2b
β−γ

Γ(β − γ + 1)
Iαa+ x(t), t > a, α > 0

⇒ (I − k M2 b
β−γ

Γ(β − γ + 1)
Iαa+) x(t) ≤ h(t) +

M1 M2 b
β−γ+α−σ

Γ(β − γ + 1)Γ(α− σ + 1)

Since

‖ k M2 b
β−γ

Γ(β − γ + 1)
Iαa+ x(t) ‖ =

∫ b

a

| k M2 b
β−γ

Γ(β − γ + 1)
Iαa+ x(t) | dt

≤
∫ b

a

k M2 b
β−γ

Γ(β − γ + 1)

∫ t

a

(t − s)α − 1

Γ(α)
|x(s)| ds dt

≤ k M2 b
β−γ

Γ(β − γ + 1)

∫ b

a

∫ b

s

(t − s)α − 1

Γ(α)
dt |x(s)| ds

≤ k M2 b
α+β−γ

Γ(β − γ + 1)Γ(α+ 1)

∫ b

a

|x(s)| ds

and k M2 b
α+β−γ

Γ(β−γ+1)Γ(α+1) < 1, then

‖ k M2 b
β−γ

Γ(β − γ + 1)
Iαa+ x(t) ‖ < ‖x(t)‖

and (I − k M2 b
β−γ

Γ(β − γ + 1)
Iαa+)−1 exists.

Then

x(t) ≤
∞∑

n = 0

(
k M2 b

β−γ

Γ(β − γ + 1)
Iαa+)n

[
h(t) +

M1 M2 b
β−γ+α−σ

Γ(β − γ + 1)Γ(α− σ + 1)

]
. 2

Remark 2.2. If we replace assumptions (ii) and (iii) by
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(ii*) There exists a positive constant M2 such that Iβa+m2(t) ≤M2;

(iii*) There exists a positive constant M1 such that Iαa+m1(t) ≤M1,

then we can obtain the following result.

Theorem 2.3. Let assumptions (i), (ii*), (iii*) and(iv) be satisfied. Let x(t) ∈ L1

satisfies the inequality (2.2) for almost all t ∈ [a, b]. If kM2b
α+β

Γ(β+1)Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(
k M2 b

β

Γ(β + 1)
Iαa+)n

[
h(t) +

M1 M2 b
β+α

Γ(β + 1)Γ(α+ 1)

]
.

Inequality (2.2) involves many integral inequalities of fractional order. So, some
particular cases can be obtained as follows.

Corollary 2.4. Let f, g : [a, b]× R+ → R+ are continuous functions, and h ∈ L1.
If x(t) ∈ L1 and satisfies the inequality (2.2) for almost all t ∈ [a, b]. Then

x(t) ≤ h(t) +
M1 M2 b

β+α

Γ(β + 1)Γ(α+ 1)
,

where M1 = sup
∀t∈[a,b]

|g(t, x)|,M2 = sup
∀t∈[a,b]

|f(t, x)|.

Corollary 2.5. Let assumptions (i)–(iv) (with α = β, f = g) be satisfied. Let
x(t) ∈ L1 and satisfies the inequality

x(t) ≤ h(t) +
(
Iαa+ f(t, x(t))

)2
, t > a, α > 0

for almost all t ∈ [a, b]. If kM2b
2α−γ

Γ(α−γ+1)Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(
k M2 b

α−γ

Γ(α− γ + 1)
Iαa+)n

[
h(t) +

M2
2 b2α−γ

Γ(α− γ + 1)Γ(α+ 1)

]
.

Corollary 2.6. Let assumptions (i)-(iv) (with α = β, f = g and h = 0) be satisfied.
Let x(t) ∈ L1 and satisfies the inequality√

x(t) ≤ Iαa+ f(t, x(t)), t > a, α > 0

for almost all t ∈ [a, b]. If kM2b
2α−γ

Γ(α−γ+1)Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(
k M2 b

α−γ

Γ(α− γ + 1)
Iαa+)n

[
M2

2 b2α−γ

Γ(α− γ + 1)Γ(α+ 1)

]
.
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Letting α, β → 1, then we have

Corollary 2.7. Let h(t), f(t, x) and g(t, x) satisfy the assumptions of Theorem 2.3.
Let x(t) ∈ L1 and satisfies the quadratic integral inequality

x(t) ≤ h(t) +

∫ t

a

f(t, x(t)) dt.

∫ t

a

g(t, x(t)) dt, t > a

for almost all t ∈ [a, b]. If kM2 b
2 < 1, then

x(t) ≤
∞∑

n = 0

(k M2 b I
α
a+)n

[
h(t) + M1 M2 b

2
]
.

Letting β → 0, then we have

Corollary 2.8. Let h(t), f(t, x) and g(t, x) satisfy the assumptions of Theorem 2.3.
Let x(t) ∈ L1 and satisfies the quadratic integral inequality

(2.3) x(t) ≤ h(t) + g(t, x(t))Iαa+ f(t, x(t)), t > a, α > 0

for almost all t ∈ [a, b]. If k.M2b
α

Γ(α+1) < 1 ∀t ∈ [a, b], then

x(t) ≤
∞∑

n = 0

(k m2(t) Iαa+)n [h(t) + M1 m2(t)] .

Proof. Using assumptions of Theorem 2.3, then inequality (2.3) becomes

x(t) ≤ h(t) + m2(t).Iαa+ (m1(t) + k x(t)), t > a, α, β > 0

x(t) ≤ h(t) + m2(t)Iαa+m1(t) + k m2(t)Iαa+x(t),

x(t) ≤ h(t) + M1 m2(t) + k m2(t).Iαa+ x(t), t > a, α > 0

⇒ (I − k m2(t) Iαa+) x(t) ≤ h(t) + M1.m2(t).

Similarly

‖ k m2(t) Iαa+ x(t)‖ ≤ k.M2 b
α

Γ(α+ 1)
‖ x(t) ‖

Then

x(t) ≤
∞∑

n = 0

(k m2(t) Iαa+)n [h(t) + M1 m2(t)] . 2

In the same fashion, we can prove the following corollary.
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Corollary 2.9. Let h(t), f(t, x) satisfy assumptions of Corollary 2.8 and g(t, x) =
1. Let x(t) ∈ L1 and satisfies the inequality

(2.4) x(t) ≤ h(t) + Iαa+ f(t, x(t)), t > a, α > 0

for almost all t ∈ [a, b]. If kbα

Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(k Iαa+)n [h(t) + M1] . 2

Letting f(t, x(t)) = m(t)x(t), β → 0 and g(t, x(t)) = 1, then we have the fol-
lowing result.

Corollary 2.10. Let h(t),m(t) ∈ L1 and m(t) > 0. Let x(t) ∈ L1 and satisfies the
inequality

(2.5) x(t) ≤ h(t) + Iαa+ m(t) x(t), t > a, α > 0

for almost all t ∈ [a, b]. If Mbα < Γ(α + 1), where M is a positive constant such
that sup

∀t∈[a,b]

|m(t)| = M, then

x(t) ≤ 1

m(t)

∞∑
j = 0

(m(t) Iαa+)j m(t) h(t), t > a.

When m(t) is continuous, then we get the following corollary.

Corollary 2.11. Let h(t) ∈ L1, m(t) > 0 and m(t) is continuous on [a, b]. Let
x(t) ∈ L1 and satisfies (2.5) for almost all t ∈ [a, b]. If bαM < Γ(α+ 1), then

x(t) ≤
∞∑

i = 0

M i Iαia+ h(t), t > a

where sup
t∈[a,b]

|m(t)| = M.

Some special cases will be considered, when m(t) = K,K 6= 0.

Corollary 2.12. Let h(t) ∈ L1 and x(t) ∈ L1 satisfying the inequality

x(t) ≤ h(t) + K Iαa+ x(t), t > a, α > 0

for almost all t ∈ [a, b]. If bαK < Γ(α+ 1), then

x(t) ≤
∞∑

i = 0

Ki Iαia+ h(t), t > a.



On Some Fractional Quadratic Integral Inequalities 217

Corollary 2.13. Let 0 ≤ β ≤ α,A ≥ 0 and let x(t) ∈ L1 satisfying the inequality

x(t) ≤ A t− β + K Iα0+ x(t), t > 0, α > 0

for almost all t ∈ [0, b]. If bαK < Γ(α+ 1), then

x(t) ≤ C A t− β , t > 0

where C depends only on K,α and b.

For h(t) = 0, we have the following corollary.

Corollary 2.14. Let x(t) ∈ L1 and x(t) > 0 satisfying

x(t) ≤ K Iαa+ x(t), t > a, α > 0

for almost all t ∈ [a, b]. If bαK < Γ(α+ 1), then

x(t) = 0, t > a.

Now, if we reverse the inequality (2.5) we shall obtain the next lemma.

Lemma 2.15. Let h(t), k(t) ∈ L1 and k(t) > 0. Let x(t) ∈ L1 and satisfies the
inequality

(2.6) x(t) ≥ h(t) − Iαa+ k(t) x(t), t > a, α > 0

for almost all t ∈ [a, b]. If there exist a function m ∈ L1 and a positive constant M

such that Iβb−m(t) ≤M,β < α. Moreover, Mbα−β < Γ(α− β + 1). Then

x(t) ≥ 1

k(t)

∞∑
i = 0

(− k(t) Iαa+)i k(t) h(t), t > a.

Proof. Multiply both sides of (2.6) by k(t), then

k(t) x(t) ≥ k(t) h(t) − k(t) Iαa+ k(t) x(t)

and setting y(t) = k(t) x(t), we get

y(t) ≥ k(t) h(t) − k(t) Iαa+ y(t)

⇒ (I − (−k(t) Iαa+)) y(t) ≥ k(t) h(t)
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Since

‖ (−k(t) Iαa+ y(t)) ‖ =

∫ b

a

| − k(t) Iαa+ y(t) | dt

≤
∫ b

a

| − k(t)|
∫ t

a

(t − s)α − 1

Γ(α)
|y(s)| ds dt

≤
∫ b

a

∫ b

s

(t − s)α − 1

Γ(α)
k(t) dt | y(s) | ds

≤
∫ b

a

Iα−βb− Iβb−m(t)dt | y(s) | ds

≤ M

∫ b

a

∫ b

s

(t − s)α −β− 1

Γ(α− β)
dt | y(s) | ds

≤ M
bα−β

Γ(α− β + 1)

∫ b

a

| y(s) | ds.

Then

‖ (−k(t)) Iαa+ y(t) ‖ < ‖ y(t) ‖
⇒ ‖ (−k(t)) Iαa+ ‖ < 1 and (I − (−k(t)) Iαa+)−1 exists.

Then

y(t) ≥
∞∑

i = 0

(−k(t)) Iαa+)i k(t) h(t),

and therefore x(t) is estimated by

x(t) ≥ 1

k(t)

∞∑
i = 0

(−k(t)) Iαa+)i k(t) h(t). 2

The next corollaries give particular cases for inequality (2.6).

Corollary 2.16. Let h(t) ∈ L1 , k(t) > 0 and k(t) is continuous on [a, b]. Let
x(t) ∈ L1 and satisfies (2.6) for almost all t ∈ [a, b]. If bαM < Γ(α+ 1), then

x(t) ≥
∞∑

i = 0

M i Iαia+ h(t), t > a,

where sup
t∈[a,b]

|k(t)| = M.

Corollary 2.17. Let h(t) ∈ L1 and x(t) ∈ L1 satisfying the inequality

x(t) ≥ h(t) − k Iαa+ x(t), t > a, α > 0



On Some Fractional Quadratic Integral Inequalities 219

for almost all t ∈ [a, b]. If bαk < Γ(α+ 1), then

x(t) ≥
∞∑

i = 0

(− k)i Iαia+ h(t), t > a, .

Corollary 2.18. Let 0 ≤ β ≤ α,A ≥ 0 and let x(t) ∈ L1 satisfying the inequality

x(t) ≥ A t− β − k Iα0+ x(t), t > a, α > 0

for almost all t ∈ [0, b]. If bαk < Γ(α+ 1), then

x(t) ≥ C A t− β , t > 0.

where C depends only on k, α and b.

Corollary 2.19. Let x(t) ∈ L1 and satisfies the inequality

x(t) ≥ k Iαa+ x(t), α > 0

for almost all t ∈ [a, b]. If bαk < Γ(α+ 1), then

x(t) ≥ 0, t > 0.

Remark 2.20 Clearly, we can obtain similar results if we replace the left-sided
fractional-order integral Iαa+ by the right-sided fractional-order integral Iαb− in in-
equality (2.2).

3. Inequality of Pachpatte Type

Over the years integral inequalities have become an important tool in the anal-
ysis of various differential and integral equations. These inequalities are useful in
investigating the asymptotic behavior and the stability on the solutions of integral
equations. Pachpatte [22] gave a new integral inequality and studied the bounded-
ness, asymptotic behavior and growth of the solutions of an integral equation using
the inequality. We introduce this inequality as follows.

Theorem 3.1.([22]) Let u, f, g be real-valued nonnegative continuous functions de-
fined on R+, and c1, c2 be nonnegative constants. If

u(t) ≤ (c1 +

∫ t

0

f(s)u(s)ds)(c2 +

∫ t

0

g(s)u(s)ds)

and c1c2
∫ t

0
R(s)Q(s)ds < 1 for all t ∈ R+, then

u(t) ≤ c1c2 Q(t)

1− c1c2
∫ t

0
R(s)Q(s)ds

, t ∈ R+,
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where

R(t) =

∫ t

0

[f(t)g(s) + f(s)g(t)]ds, Q(t) = exp (

∫ t

0

[c1g(s) + c2f(s)]ds).

Now consider the quadratic inequality of fractional order

x(t) ≤ (c1 + Iαa+ f(t, x(t)))(c2 + Iβa+ g(t, x(t))), t > a, α, β > 0(3.1)

Theorem 3.2. Let assumptions (i), (ii*), (iii*) and (iv) be satisfied. Let x(t) ∈ L1

satisfies the inequality (3.1) for almost all t ∈ [a, b]. If k(c2+M1)bα

Γ(α+1) < 1, then

x(t) ≤
∞∑

n = 0

(
k(c2 +M1) Iαa+

)n
(c1 c2 + c1 M1 +M2cs2 +M1 M2) .

x(t) ≤
∞∑

n = 0

(k(c2 +M1))n tnα (c1 c2 + c1 M1 +M2cs2 +M1 M2)

Γ(α n+ 1)
.

Proof. The proof can straight forward as in Theorem 2.1. 2

When f(t, x) = m(t)x(t) and g(t, x) = k(t)x(t), then we obtain Pachpatte
inequality which is studied in [22].

Competing Interests. The authors declare that they have no competing inter-
ests.
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