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Abstract. In this paper, we obtain integral analogues of inequalities concerning polynomials

proved by Soraisam et al. [33]. The results improve other known inequalities as well.

1. Introduction

Let p(z) be a polynomial of degree n over the set of complex numbers and
for each real number r > 0, we define the integral mean of p(z) on the unit
circle |z| = 1 by

‖p‖r =

 1

2π

2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ


1
r

.

If we take limit as r →∞ in the above equality and make use of the well-known
fact from analysis [29, 36] that

lim
r→∞

 1

2π

2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ


1
r

= max
|z|=1

|p(z)|,
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we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|.

Similarly, we can define

‖p‖0 = exp

 1

2π

2π∫
0

log |p(eiθ)|dθ

 ,

and it follows easily that lim
r→0+

‖p‖r = ‖p‖0. It would be of further interest

that by taking limit as r → 0+ the stated results on integral mean inequalities
holding for r > 0, hold for r = 0 as well.

A classical inequality that relates an estimate to the size of the derivative
of a polynomial to that of the polynomial itself in the uniform-norm on the
unit circle in the plane was shown in the famous Bernstein-inequality [4]. It
states that, if p(z) is a polynomial of degree n, then

‖p′‖∞ ≤ n‖p‖∞. (1.1)

Equality holds in (1.1) if and only if p(z) has all its zeros at the origin. In-
equality (1.1) can be obtained by letting r →∞ in the inequality

‖p′‖r ≤ n‖p‖r, r > 0. (1.2)

Inequality (1.2) was proved by Zygmund [38] for r ≥ 1 and by Arrestov [1] for
0 < r < 1.

If we restrict to the class of polynomials having no zeros in |z| < 1, then
inequalities (1.1) and (1.2) can be respectively improved as

‖p′‖∞ ≤
n

2
‖p‖∞, (1.3)

‖p′‖r ≤
n

‖1 + z‖r
‖p‖r, r > 0. (1.4)

Inequality (1.3) was conjectured by Erdös and later verified by Lax [19] whereas,
inequality (1.4) was proved by De-Bruijn [8] for r ≥ 1 and by Rahman and
Schmeisser [26] for 0 < r < 1.

On the other hand, in 1939 (see [37]), Turán obtained a lower bound for
the maximum of |p′(z)| on |z| = 1, by proving that if p(z) is a polynomial of
degree n having all its zeros in |z| ≤ 1, then

‖p′‖∞ ≥
n

2
‖p‖∞. (1.5)

Both inequalities (1.3) and (1.5) attain equality for the polynomial p(z) =
α+ βzn, where |α| = |β|.
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Malik [20] generalized (1.3) by considering that if p(z) has no zero in |z| < k,
k ≥ 1 and proved that

‖p′‖∞ ≤
n

1 + k
‖p‖∞. (1.6)

Inequality (1.6) is best possible and equality holds for p(z) = (z+ k)n. Under
the same hypothesis for the polynomial as above, Govil and Rahman [12]
extended (1.6) into integral mean version by proving that

‖p′‖r ≤
n

‖k + z‖r
‖p‖r, r ≥ 1. (1.7)

Gardner and Weems [11], and Rather [27] independently proved that (1.7) also
holds for 0 < r < 1.

Govil et al. [13] refined (1.6) by involving certain coefficients for the poly-
nomial of degree n having no zero in |z| < k, k ≥ 1 by proving that

‖p′‖∞ ≤ n
{

n|a0|+ k2|a1|
n|a0|(1 + k2) + 2k2|a1|

}
‖p‖∞. (1.8)

Inequality (1.8) was extended to integral mean by Aziz and Rather [3]. They
proved that if p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1,
then for each r > 0,

‖p′‖r ≤
n

‖δk,1 + z‖r
‖p‖r, (1.9)

where δk,1 = n|a0|k2+|a1|k2
n|a0|+k2|a1| .

On the other hand, as a generalization of (1.5), Malik [20] proved that if
p(z) has all its zeros in |z| ≤ k, k ≤ 1, then

‖p′‖∞ ≥
n

1 + k
‖p‖∞. (1.10)

For the first time in 1984, Malik [21] extended inequality (1.5) proved by
Turán [37] into integral mean version and proved that if p(z) is a polynomial
of degree n having all its zeros in |z| ≤ 1, then for each r > 0,

‖1 + z‖r‖p′‖∞ ≥ n‖p‖r.

The result is sharp and equality holds for p(z) = (z + 1)n.

In 1988, Aziz [2] obtained the integral mean of inequality (1.10) and proved
that if p(z) has all its zeros in |z| ≤ k, k ≤ 1, then for each r > 0,

‖1 + kz‖r‖p′‖∞ ≥ n‖p‖r. (1.11)

Equality in (1.11) holds for the polynomial p(z) = (αz+βk)n, where |α| = |β|.
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As a refinement of (1.10), by involving certain coefficients of the polynomial,
Govil et al. [13] proved that if p(z) has all its zeros in |z| ≤ k, k ≤ 1, then

‖p′‖∞ ≥ n
{

n |an|+ |an−1|
n|an|(1 + k2) + 2 |an−1|

}
‖p‖∞. (1.12)

Inequality (1.12) was extended to integral analogue by Aziz and Rather [3] by
proving that if p(z) has all its zeros in |z| ≤ k, k ≤ 1, then for each r > 0,

n

∥∥∥∥ pp′
∥∥∥∥
r

≤ ‖1 + tk,1z‖r (1.13)

and

‖p′‖∞ ≥
n

‖1 + tk,1z‖r
‖p‖r, (1.14)

where tk,1 = n|an|k2+|an−1|
n|an|+|an−1| .

Several improvements, generalizations and extensions of the above inequal-

ities which fundamentally estimates the bounds of
{
‖p′‖∞
‖p‖∞

}
under prescribed

restrictions on zeros of p(z) are available in the literature. It is also desirable
to know the dependence of the above mentioned ratio on the coefficients of
the polynomial under consideration.

In this direction, Govil et al. [13] proved the following two results, where the
first improves (1.6) and (1.8), and the second (1.10) and (1.12) by involving
certain coefficients of the polynomial.

Theorem 1.1. ([13]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

‖p‖∞, (1.15)

where λ = ka1
na0

and µ = 2k2a2
n(n−1)a0

.

Theorem 1.2. ([13]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having all

its zeros in |z| ≤ k, k ≤ 1, then

‖p′‖∞ ≥
n

1 + k

(1− |ω|)(1 + k2|ω|) + k(n− 1)|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + k(n− 1)|Ω− ω2|

‖p‖∞, (1.16)

where ω = ān−1

nkān
and Ω = 2ān−2

n(n−1)k2ān
.
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Krishnadas et al. [16] extended both Theorem 1.1 and Theorem 1.2 to
integral versions, where the first result obtained not only generalizes Theorem
1.1 but also improves inequalities (1.7) and (1.9), and the second to integral
analogue of Theorem 1.2 and improves inequalities (1.11) and (1.13), (1.14).
Finally, by using Holder’s inequality [14] the authors established a result which
is a generalization of their second result.

Theorem 1.3. ([16]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, then for each r > 0,

‖p′‖r ≤
n

‖Aλ,µ + z‖r
‖p‖r,

where Aλ,µ = k |λ|(1−|λ|)+(n−1)|µ−λ2|k+(1−|λ|)k2
(1−|λ|)+(n−1)|µ−λ2|k+|λ|(1−|λ|)k2 , λ = ka1

na0
and µ = 2k2a2

n(n−1)a0
.

Theorem 1.4. ([16]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having all

its zeros in |z| ≤ k, k ≤ 1, then for each r > 0,

n

∥∥∥∥ pp′
∥∥∥∥
r

≤ ‖1 +Bω,Ωz‖r,

where Bω,Ω = k |ω|(1−|ω|)+(n−1)|Ω−ω2|k+(1−|ω|)k2
(1−|ω|)+(n−1)|Ω−ω2|k+|ω|(1−|ω|)k2 , ω = ān−1

nkān
and Ω = 2ān−2

n(n−1)k2ān
.

Theorem 1.5. ([16]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having all

its zeros in |z| ≤ k, k ≤ 1, then for s > 1, t > 1 with s−1 + t−1 = 1 and for
each r > 0,

‖p′‖tr ≥
n

‖1 +Bω,Ωz‖sr
‖p‖r, (1.17)

where Bω,Ω is as defined in Theorem 1.4.

Next, by considering polynomials of degree n ≥ 3, Soraisam et al. [33]
proved the following two results, where the first improves Theorem 1.1, and
the second Theorem 1.2 by involving min

|z|=k
|p(z)|.
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Theorem 1.6. ([33]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n ≥ 3 having

no zero in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

‖p‖∞

− n

kn

(
1− 1

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

)
m

(1.18)

where λ = ka1
na0

, µ = 2k2a2
n(n−1)a0

and m = min
|z|=k

|p(z)|.

Theorem 1.7. ([33]) If p(z) =
n∑
j=0

ajz
j, a0 6= 0 is a polynomial of degree

n ≥ 3 having all its zeros in |z| ≤ k, k ≤ 1, then

‖p′‖∞ ≥
n

1 + k

(1− |ω|)(1 + k2|ω|) + k(n− 1)|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + k(n− 1)|Ω− ω2|

× {‖p‖∞ +m} , (1.19)

where ω = ān−1

nkān
, Ω = 2ān−2

n(n−1)k2ān
and m = min

|z|=k
|p(z)|.

The improvement and generalization of the inequalities concerning complex
polynomials is a widely studied topic, and for more information in this direc-
tion, we refer to the recently published papers [5], [7], [9], [17], [18], [22], [23],
[24], [28], [30], [31], [32], [34] etc.

The present paper is mainly motivated by the desire to establish an integral
version of inequalities (1.18) and (1.19), and an improvement of inequality
(1.17) by involving the minimum modulus of the polynomial. The paper is
organized as follows. In Section 2, we present some auxiliary results necessary
in proving the main results. Then the main results in the integral setting and
its proofs are given along with remarks and a corollary in Section 3.

2. Lemmas

The following lemmas are needed for the proof of the theorems.

Lemma 2.1. ([35]) If p(z) is a polynomial of degree n having no zero in
|z| < k, k ≥ 1, then for |z| ≤ k, |ξ| ≤ k, where ξ is a real or complex number,
we have

(ξ − z)p′(z) + np(z) 6= 0.
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Lemma 2.2. ([13]) If f(z) is analytic and |f(z)| ≤ 1 in |z| ≤ 1, then for
|z| ≤ 1,

|f(z)| ≤ (1− |a|)|z|2 + |bz|+ |a|(1− |a|)
|a|(1− |a|)|z|2 + |bz|+ (1− |a|)

,

where a = f(0), b = f ′(0). The example

f(z) =
a+ b

1+az − z
2

1− b
1+az − az2

shows that the estimate is sharp.

Lemma 2.3. ([3]) If p(z) is a polynomial of degree n and q(z) = znp
(

1
z̄

)
,

then for each γ, 0 ≤ γ < 2π and for each r > 0,

2π∫
0

2π∫
0

|q′(eiθ) + eiγp′(eiθ)|rdθdγ ≤ 2πnr
2π∫
0

|p(eiθ)|rdθ.

Lemma 2.4. ([10]) Let z be any complex and independent of γ, where γ is
any real, then for each r > 0,

2π∫
0

|1 + zeiγ |rdγ =

2π∫
0

|eiγ + |z||rdγ.

Lemma 2.5. ([25]) If p(z) = a0 +
n∑
j=µ

ajz
j, 1 ≤ µ ≤ n is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then

µ

n

|aµ|
|a0|

kµ ≤ 1.

Lemma 2.6. ([33]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, then

1− 1

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

≥ 0,

where λ = ka1
na0

and µ = 2k2a2
n(n−1)a0

.
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Lemma 2.7. ([16]) If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n having all

its zeros in |z| ≤ k, k ≤ 1 and q(z) = znp
(

1
z

)
, then on |z| = 1,

|q′(z)| ≤ Bω,Ω|p′(z)|,

where Bω,Ω = k |ω|(1−|ω|)+(n−1)|Ω−ω2|k+(1−|ω|)k2
(1−|ω|)+(n−1)|Ω−ω2|k+|ω|(1−|ω|)k2 , ω = ān−1

nkān
and Ω = 2ān−2

n(n−1)k2ān

such that |ω| ≤ 1 and (n− 1)|Ω− ω2| ≤ 1− |ω|2.

3. Main results

In this paper, we consider polynomials of degree n ≥ 3 and prove the
following theorem which is an integral extension of Theorem 1.6 and is an
improvement of Theorem 1.3 by involving min

|z|=k
|p(z)|. In fact, we prove:

Theorem 3.1. If p(z) =
n∑
j=0

ajz
j is a polynomial of degree n ≥ 3 having no

zero in |z| < k, k ≥ 1, then for every complex number α with |α| < 1
kn and for

each r > 0,

‖Aλ,µ + z‖r
∥∥p′(z) + αmnzn−1

∥∥
r
≤ n ‖p(z) +mαzn‖r , (3.1)

where Aλ,µ = k |λ|(1−|λ|)+(n−1)|µ−λ2|k+(1−|λ|)k2
(1−|λ|)+(n−1)|µ−λ2|k+|λ|(1−|λ|)k2 , λ = ka1

na0
, µ = 2k2a2

n(n−1)a0
and

m = min
|z|=k

|p(z)|.

Proof. Consider a new polynomial P (z) = p(z) +mαzn, where α is a complex
number with |α| < 1

kn , m = min
|z|=k

|p(z)|. Now, on |z| = k

|mαzn| < m
1

kn
kn = m ≤ |p(z)|.

Then by Rouche’s theorem [6], p(z) and P (z) must have same number of zeros
in |z| < k and hence P (z) has no zero in |z| < k. And for |z| < k, |ξ| < k,
where ξ is a complex number, by Lemma 2.1, we have

nP (z) + (ξ − z)P ′(z) 6= 0,

that is,

nP (z)− zP ′(z) 6= −ξP ′(z).
Consequently, for |z| ≤ k ∣∣∣∣ P ′(z)

nP (z)− zP ′(z)

∣∣∣∣ ≤ 1

k
.
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Hence if

f(z) =
kP ′(kz)

nP (kz)− kzP ′(kz)
,

then |f(z)| ≤ 1 for |z| ≤ 1. Also

f(0) =
ka1

na0
= λ

and

f ′(0) = (n− 1)

{
2k2a2

n(n− 1)a0
−
(
ka1

na0

)2
}

= (n− 1)(µ− λ2).

Then for |z| ≤ 1, we use Lemma 2.2 to conclude that

|f(z)| ≤ (1− |λ|)|z|2 + (n− 1)|µ− λ2||z|+ |λ|(1− |λ|)
|λ|(1− |λ|)|z|2 + (n− 1)|µ− λ2||z|+ (1− |λ|)

.

Thus in particular for |z| = 1, we have

|P ′(z)| ≤ 1

k

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2

|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2
|nP (z)− zP ′(z)|.

(3.2)

If Q(z) = znP (1
z ), then on |z| = 1, |nP (z) − zP ′(z)| = |Q′(z)|. Therefore,

inequality (3.2) becomes

|P ′(z)| ≤ 1

k

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2

|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2
|Q′(z)|,

that is, ∣∣∣∣Q′(z)P ′(z)

∣∣∣∣ ≥ k |λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2
.

For points eiθ, 0 ≤ θ < 2π for which P ′(eiθ) 6= 0, we obtain∣∣∣∣Q′(eiθ)P ′(eiθ)

∣∣∣∣ ≥ Aλ,µ, (3.3)

where Aλ,µ = k |λ|(1−|λ|)+(n−1)|µ−λ2|k+(1−|λ|)k2
(1−|λ|)+(n−1)|µ−λ2|k+|λ|(1−|λ|)k2 .

We have for every real γ and L ≥ l ≥ 1,

|L+ eiγ | ≥ |l + eiγ |.

Then, for every r > 0 we have

2π∫
0

|L+ eiγ |rdγ ≥
2π∫
0

|l + eiγ |rdγ. (3.4)
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Applying Lemma 2.3 to P (z), we have for each r > 0,

2π∫
0

2π∫
0

|Q′(eiθ) + eiγP ′(eiθ)|rdθdγ ≤ 2πnr
2π∫
0

|P (eiθ)|rdθ. (3.5)

For points eiθ, 0 ≤ θ < 2π for which P ′(eiθ) 6= 0, we denote L =
∣∣∣Q′(eiθ)
P ′(eiθ)

∣∣∣ and

l = Aλ,µ, then by (3.3) and Remark 3.3 we have L ≥ l ≥ 1 and for each r > 0,

2π∫
0

|Q′(eiθ) + eiγP ′(eiθ)|rdγ = |P ′(eiθ)|r
2π∫
0

∣∣∣∣Q′(eiθ)P ′(eiθ)
+ eiγ

∣∣∣∣r dγ
= |P ′(eiθ)|r

2π∫
0

∣∣∣∣∣∣∣∣Q′(eiθ)P ′(eiθ)

∣∣∣∣+ eiγ
∣∣∣∣r dγ

≥ |P ′(eiθ)|r
2π∫
0

∣∣Aλ,µ + eiγ
∣∣r dγ.

Integrating both sides with respect to θ from 0 to 2π, we have

2π∫
0

2π∫
0

|Q′(eiθ)+eiγP ′(eiθ)|rdθdγ ≥


2π∫
0

∣∣Aλ,µ+eiγ
∣∣r dγ




2π∫
0

|P ′(eiθ)|rdθ

 .

(3.6)
Combining inequalities (3.5) and (3.6), we get

2π∫
0

∣∣Aλ,µ + eiγ
∣∣r dγ




2π∫
0

|P ′(eiθ)|rdθ

 ≤ 2πnr
2π∫
0

|P (eiθ)|rdθ.

This is equivalent to 1

2π

2π∫
0

∣∣Aλ,µ + eiγ
∣∣r dγ


1
r
 1

2π

2π∫
0

|p′(eiθ) + αmnei(n−1)θ|rdθ


1
r

≤ n

 1

2π

2π∫
0

|p(eiθ) +mαeinθ|rdθ


1
r

and hence the proof of Theorem 3.1 is completed. �
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Remark 3.2. Letting r →∞ on both sides of (3.1), we get

{Aλ,µ + 1}max
|z|=1

|p′(z) + αmnzn−1| ≤ nmax
|z|=1

|p(z) +mαzn|. (3.7)

Let z0 on |z| = 1 be such that

max
|z|=1

|p′(z)| = |p′(z0)|. (3.8)

Now,
|p′(z0) + αmnzn−1

0 | ≤ max
|z|=1

|p′(z) + αmnzn−1|. (3.9)

In the left hand side of inequality (3.9) for suitable choice of the argument of
α, we have

|p′(z0) + αmnzn−1
0 | = |p′(z0)|+ n|α|m. (3.10)

Using (3.10) and (3.8) in inequality (3.9), we have

max
|z|=1

|p′(z)|+ n|α|m ≤ max
|z|=1

|p′(z) + αmnzn−1|. (3.11)

Combining inequalities (3.11) and (3.7), we have

{Aλ,µ + 1}
(

max
|z|=1

|p′(z)|+ n|α|m
)
≤ nmax

|z|=1
|p(z) +mαzn|. (3.12)

Again, let z1 on |z| = 1 be such that

max
|z|=1

|p(z) +mαzn| = |p(z1) +mαzn1 |

≤ |p(z1)|+ |α|m
≤ max

|z|=1
|p(z)|+ |α|m. (3.13)

Using inequality (3.13) in inequality (3.12), we have

{Aλ,µ + 1}
(

max
|z|=1

|p′(z)|+ n|α|m
)
≤ n

(
max
|z|=1

|p(z)|+ |α|m
)
,

which on simplification and letting the limit as |α| → 1
kn , gives inequality

(1.18) of Theorem 1.6.

Remark 3.3. Inequality (3.1) is an improvement of (1.7) proved by Govil
and Rahman [12] for r ≥ 1, and Gardner and Weems [11], and Rather [27] for
0 < r < 1. It is sufficient to prove that Aλ,µ ≥ k, where Aλ,µ is defined in
Theorem 3.1 and k ≥ 1, which is equivalent to showing that

|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2
≥ 1,

that is,
|λ|+ k2 ≥ 1 + |λ|k2.
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Therefore, we have k2 ≥ 1, which is true since 1−|λ| ≥ 0 (by Lemma 2.5) and
k ≥ 1.

Remark 3.4. Inequality (3.1) is also an improvement of (1.9) proved by Aziz
and Rather [3]. For this, it is enough to show that Aλ,µ ≥ δk,1, where Aλ,µ
and δk,1 are defined in Theorem 3.1 and inequality (1.9) respectively.

Since δk,1 = n|a0|k2+|a1|k2
n|a0|+k2|a1| = k+|λ|

k+|λ|k2 , where λ is as defined Theorem 3.1, it is

sufficient to show that

k
|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2
≥ k + |λ|
k + |λ|k2

,

which implies

(k − 1)[(1− |λ|){k3|λ|(k + 1) + k2|λ|2 + k3 + |λ|(k + 1)}

+k(n− 1)|µ− λ2|{k + |λ|(k2 + k + 1)}] ≥ 0,

from which we eventually obtain

(1− |λ|){k4|λ|+ k3(|λ|+ 1) + k2|λ|2 + k|λ|+ |λ|}

+k(n− 1)|µ− λ2|{k2|λ|+ k(|λ|+ 1) + |λ|} ≥ 0,

which obviously holds due to the fact that |λ| ≤ 1 (by Lemma 2.5).

Remark 3.5. Inequality (3.1) in its ordinary form obtained as in Remark 3.2
improves inequality (1.15) of Theorem 1.1 due to Govil et al. [13]. For this it
is sufficient to show that(

1− 1

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

)
≥ 0. (3.14)

From Lemma 2.6, we have inequality (3.14).

Next, we obtain the following integral analogue of Theorem 1.7 which is an
improvement of Theorem 1.4 as well.

Theorem 3.6. If p(z) =
n∑
j=0

ajz
j, a0 6= 0 is a polynomial of degree n ≥ 3

having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| < 1 and for each r > 0,

n

∥∥∥∥p(z) +mα

p′(z)

∥∥∥∥
r

≤ ‖1 +Bω,Ωz‖r, (3.15)

where Bω,Ω = k |ω|(1−|ω|)+(n−1)|Ω−ω2|k+(1−|ω|)k2
(1−|ω|)+(n−1)|Ω−ω2|k+|ω|(1−|ω|)k2 , ω = ān−1

nkān
, Ω = 2ān−2

n(n−1)k2ān
and

m = min
|z|=k

|p(z)|.
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Proof. Consider the polynomial P (z) = p(z) + mα, where α is a complex
number with |α| < 1, m = min

|z|=k
|p(z)|. Then by Rouches theorem [6] it follows

that P (z) has all its zeros in |z| ≤ k, k ≤ 1. Since P (z) has all its zeros in
|z| ≤ k, k ≤ 1, by Gauss Lucas Theorem P ′(z) has all its zeros in |z| ≤ k,
k ≤ 1 and hence the polynomial

zn−1P

(
1

z̄

)
= nQ(z)− zQ′(z), (3.16)

where Q(z) = znP
(

1
z̄

)
has all its zeros in |z| ≥ 1

k , 1
k ≥ 1. Further, since P (z)

has all its zeros in |z| ≤ k, k ≤ 1, we have by Lemma 2.7

|Q′(z)| ≤ Bω,Ω|P ′(z)| on |z| = 1, (3.17)

where Bω,Ω = k |ω|(1−|ω|)+(n−1)|Ω−ω2|k+(1−|ω|)k2
(1−|ω|)+(n−1)|Ω−ω2|k+|ω|(1−|ω|)k2 .

For |z| = 1, we also have

|P ′(z)| = |nQ(z)− zQ′(z)|. (3.18)

Using (3.18) in (3.17) we have on |z| = 1

|Q′(z)| ≤ Bω,Ω|nQ(z)− zQ′(z)|. (3.19)

Thus, in view of (3.16) and (3.19), the function

φ(z) =
zQ′(z)

Bω,Ω{nQ(z)− zQ′(z)}
is analytic in |z| ≤ 1, |φ(z)| ≤ 1 on |z| = 1 and φ(0) = 0. Therefore, the
function 1 + Bω,Ωφ(z) is subordinate to the function 1 + Bω,Ωz for |z| ≤ 1.
Hence, by a well-known property of subordination [15], we have for each r > 0

2π∫
0

∣∣∣1 +Bω,Ωφ(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣1 +Bω,Ωe
iθ
∣∣∣r dθ. (3.20)

Now,

1 +Bω,Ωφ(z) = 1 +
zQ′(z)

nQ(z)− zQ′(z)
=

nQ(z)

nQ(z)− zQ′(z)
,

which implies for |z| = 1,

|nQ(z)| = |1 +Bω,Ωφ(z)||nQ(z)− zQ′(z)|
= |1 +Bω,Ωφ(z)||P ′(z)|.

Since |P (z)| = |Q(z)| on |z| = 1, we have from the proceeding inequality

n|P (z)| = |1 +Bω,Ωφ(z)||P ′(z)| on |z| = 1, (3.21)
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that is,

n

∣∣∣∣ P (z)

P ′(z)

∣∣∣∣ = |1 +Bω,Ωφ(z)| on |z| = 1.

Then for each r > 0 and 0 ≤ θ < 2π, we have

nr
2π∫
0

∣∣∣∣ P (eiθ)

P ′(eiθ)

∣∣∣∣r dθ =

2π∫
0

∣∣∣1 +Bω,Ωφ(eiθ)
∣∣∣r dθ,

which on using (3.20) gives

nr
2π∫
0

∣∣∣∣ P (eiθ)

P ′(eiθ)

∣∣∣∣r dθ ≤
2π∫
0

∣∣∣1 +Bω,Ωe
iθ
∣∣∣r dθ,

which implies

n

 1

2π

2π∫
0

∣∣∣∣p(eiθ) +mα

p′(eiθ)

∣∣∣∣r dθ


1
r

≤

 1

2π

2π∫
0

∣∣∣1 +Bω,Ωe
iθ
∣∣∣r dθ


1
r

and this completes the proof. �

Since |p′(eiθ)| ≤ ‖p′‖∞ for 0 ≤ θ < 2π, the following corollary immediately
follows.

Corollary 3.7. If p(z) =
n∑
j=0

ajz
j, a0 6= 0 is a polynomial of degree n ≥ 3

having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| < 1 and for each r > 0,

‖p′‖∞ ≥
n

‖1 +Bω,Ωz‖r
‖p(z) +mα‖r, (3.22)

where Bω,Ω and m are as defined in Theorem 3.6.

Remark 3.8. Inequality (3.22) is an improvement of (1.11) proved by Aziz
[2]. It is sufficient to prove that Bω,Ω ≤ k, where Bω,Ω is defined in Theorem
3.6 and k ≤ 1, which is equivalent to showing that

|ω|(1− |ω|) + (n− 1)|Ω− ω2|k + (1− |ω|)k2

(1− |ω|) + (n− 1)|Ω− ω2|k + |ω|(1− |ω|)k2
≤ 1,

that is,

|ω|+ k2 ≤ 1 + |ω|k2.

Therefore, we have k2 ≤ 1, which is true since 1 − |ω| ≥ 0 (by Lemma 2.7)
and k ≤ 1.
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Remark 3.9. Inequality (3.15) is an improvement of (1.13) proved by Aziz
and Rather [3]. For this, it is enough to show that Bω,Ω ≤ tk,1, where Bω,Ω
and tk,1 are defined in Theorem 3.6 and inequality (1.13) respectively.

Since tk,1 = n|an|k2+|an−1|
n|an|+|an−1| = k+|ω|

k+|ω|k2 , where ω is as defined Theorem 3.6, it

is sufficient to show that

k
|ω|(1− |ω|) + (n− 1)|µ− ω2|k + (1− |ω|)k2

(1− |ω|) + (n− 1)|µ− ω2|k + |ω|(1− |ω|)k2
≤ k + |ω|
k + |ω|k2

,

which implies

(k − 1)[(1− |ω|){k3|ω|(k + 1) + k2|ω|2 + k3 + |ω|(k + 1)}
+k(n− 1)|µ− ω2|{k + |ω|(k2 + k + 1)}] ≤ 0,

from which we eventually obtain

(1− |ω|){k4|ω|+ k3(|ω|+ 1) + k2|ω|2 + k|ω|+ |ω|}
+k(n− 1)|µ− ω2|{k2|ω|+ k(|ω|+ 1) + |ω|} ≤ 0,

which obviously holds due to the fact that |ω| ≤ 1 (by Lemma 2.7).

Remark 3.10. Due to the fact that Bω,Ω ≤ tk,1, inequality (3.22) of Corollary
3.7 is a refinement of inequality (1.14) due to Aziz and Rather [3].

Remark 3.11. Corollary 3.7 is a generalization of Theorem 1.7. We know by
definition

n

‖1 +Bω,Ωz‖∞
= n lim

r→∞

 1

2π

2π∫
0

∣∣∣1 +Bω,Ωe
iθ
∣∣∣r dθ


− 1
r

=
n

1 +Bω,Ω
,

its R.H.S. further simplifies to

n

1 + k

(1− |ω|)(1 + k2|ω|) + k(n− 1)|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + k(n− 1)|Ω− ω2|

.

Thus, letting r →∞, (3.22) reduces to

max
|z|=1

|p′(z)| ≥ n

1 + k

(1− |ω|)(1 + k2|ω|) + k(n− 1)|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + k(n− 1)|Ω− ω2|

×max
|z|=1

|p(z) +mα|. (3.23)

Suppose z0 on |z| = 1 be such that max
|z|=1

|p(z)| = |p(z0)|. Then, in particular

max
|z|=1

|p(z) +mα| ≥ |p(z0) +mα|. (3.24)

Now we can choose the argument of α suitably such that

|p(z0) +mα| = |p(z0)|+ |α|m. (3.25)



290 N. K. Singha and B. Chanam

Using (3.25) in (3.24), we have

max
|z|=1

|p(z) +mα| ≥ |p(z0)|+ |α|m. (3.26)

On combining (3.23) and (3.26), and taking the limit as |α| → 1 gives inequal-
ity (1.19) of Theorem 1.7.

Remark 3.12. Inequality (3.22) in its ordinary form obtained as in Remark
3.11 improves inequality (1.16) of Theorem 1.2 due to Govil et al. [13] by
involving min

|z|=k
|p(z)|. For this it is sufficient to show that

n

1 + k

(1− |ω|)(1 + k2|ω|) + k(n− 1)|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + k(n− 1)|Ω− ω2|

≥ 0,

which is equivalent to showing

1− |ω| ≥ 0,

which is satisfied by Lemma 2.7.

Finally, we use Holder’s inequality [14] to establish the following result which
is a generalization of Theorem 3.6 and is an improvement of Theorem 1.5 as
well by involving min

|z|=k
|p(z)|.

Theorem 3.13. If p(z) =
n∑
j=0

ajz
j, a0 6= 0 is a polynomial of degree n ≥ 3

having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| < 1, for s > 1, t > 1 with s−1 + t−1 = 1 and for each r > 0,

‖p′‖tr ≥
n

‖1 +Bω,Ωz‖sr
‖p(z) +mα‖r,

where Bω,Ω and m are as defined in Theorem 3.6.

Proof. Proceeding similarly as in the proof of Theorem 3.6, we have from
(3.21)

n|P (z)| = |1 +Bω,Ωφ(z)||P ′(z)|.

Then for each r > 0 and 0 ≤ θ < 2π, we have

nr
2π∫
0

|P (eiθ)|rdθ =

2π∫
0

∣∣∣1 +Bω,Ωφ(eiθ)
∣∣∣r |P ′(eiθ)|rdθ.
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Applying Holder’s inequality [14] to the above inequality, we have for s > 1,
t > 1 with s−1 + t−1 = 1 and for each r > 0

nr
2π∫
0

|P (eiθ)|rdθ ≤


2π∫
0

∣∣∣1 +Bω,Ωφ(eiθ)
∣∣∣sr dθ


1
s


2π∫
0

|P ′(eiθ)|trdθ


1
t

,

which implies

n


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

∣∣∣1 +Bω,Ωφ(eiθ)
∣∣∣sr dθ


1
sr


2π∫
0

|P ′(eiθ)|trdθ


1
tr

.

Using (3.20) in the above inequality, we have

n


2π∫
0

|p(eiθ) +mα|rdθ


1
r

≤


2π∫
0

∣∣∣1 +Bω,Ωe
iθ
∣∣∣sr dθ


1
sr


2π∫
0

|p′(eiθ)|trdθ


1
tr

,

which is the desired conclusion of the theorem. �

Remark 3.14. Letting t → ∞ (so that s → 1) in Theorem 3.13, we obtain
Corollary 3.7. Thus, taking the limit as t→∞ (so that s→ 1) or s→∞ (so
that t → 1) and then letting r → ∞, in view of Remark 3.10, Theorem 3.13
reduces to (1.19) of Theorem 1.7.
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