• 제목/요약/키워드: Integral Transform

검색결과 348건 처리시간 0.021초

ON A CLASS OF GENERALIZED FUNCTIONS FOR SOME INTEGRAL TRANSFORM ENFOLDING KERNELS OF MEIJER G FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.515-525
    • /
    • 2018
  • In this paper, we investigate a modified $G^2$ transform on a class of Boehmians. We prove the axioms which are necessary for establishing the $G^2$ class of Boehmians. Addition, scalar multiplication, convolution, differentiation and convergence in the derived spaces have been defined. The extended $G^2$ transform of a Boehmian is given as a one-to-one onto mapping that is continuous with respect to certain convergence in the defined spaces. The inverse problem is also discussed.

CHANGE OF SCALE FORMULAS FOR FUNCTION SPACE INTEGRALS RELATED WITH FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION ON Ca,b[0, T]

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.47-64
    • /
    • 2015
  • We express generalized Fourier-Feynman transform and convolution product of functionals in a Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ as limits of function space integrals on $C_{a,b}[0,T]$. Moreover we obtain change of scale formulas for function space integrals related with generalized Fourier-Feynman transform and convolution product of these functionals.

A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • 충청수학회지
    • /
    • 제26권1호
    • /
    • pp.111-123
    • /
    • 2013
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals on classical Wiener space. Yoo and Skoug extended this result to an abstract Wiener space. In this paper, we investigate a change of scale formula for generalized Wiener integrals of various functions using the generalized Fourier-Feynman transform.

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS IN A FRESNEL TYPE CLASS

  • Chang, Seung-Jun
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.273-289
    • /
    • 2011
  • In this paper we dene the concept of a conditional generalized Fourier-Feynman transform on very general function space $C_{a,b}$[0, T]. We then establish the existence of the conditional generalized Fourier-Feynman transform for functionals in a Fresnel type class. We also obtain several results involving the conditional transform. Finally we present functionals to apply our results. The functionals arise naturally in Feynman integration theories and quantum mechanics.

GENERALIZED SEQUENTIAL CONVOLUTION PRODUCT FOR THE GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

  • Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.321-332
    • /
    • 2021
  • This paper is a further development of the recent results by the authors on the generalized sequential Fourier-Feynman transform for functionals in a Banach algebra Ŝ and some related functionals. We investigate various relationships between the generalized sequential Fourier-Feynman transform and the generalized sequential convolution product of functionals. Parseval's relation for the generalized sequential Fourier-Feynman transform is also given.