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A CHANGE OF SCALE FORMULA FOR
GENERALIZED WIENER INTEGRALS II

Byoung Soo Kim*, Teuk Seob Song**, and Il Yoo***

Abstract. Cameron and Storvick discovered change of scale for-
mulas for Wiener integrals on classical Wiener space. Yoo and Sk-
oug extended this result to an abstract Wiener space. In this paper,
we investigate a change of scale formula for generalized Wiener in-
tegrals of various functions using the generalized Fourier–Feynman
transform.

1. Introduction

It has long been known that Wiener measure and Wiener measur-
ability behave badly under the change of scale transformation [3] and
under translations [4]. Cameron and Storvick [3] expressed the analytic
Feynman integral for a rather large class of functionals as a limit of
Wiener integrals. In doing so, they discovered nice change of scale for-
mulas for Wiener integrals on classical Wiener space (C0[0, T ],mw). In
[13, 14], Yoo and Skoug extended these results to an abstract Wiener
space (H, B, ν). In [15], Yoo, Song, Kim and Chang investigated a
change of scale formula for Wiener integrals of functions on abstract
Wiener space which need not be bounded or continuous. In this paper,
we investigate a change of scale formula for generalized Wiener integrals
of various functions using the generalized Fourier–Feynman transform
on classical Wiener space.

2. Definitions and preliminaries

Let C0[0, T ] denote the Wiener space, that is, the space of R-valued
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continuous functions x on [0, T ] with x(0) = 0. Let M denote the class
of all Wiener measurable subsets of C0[0, T ] and let mw denote Wiener
measure. (C0[0, T ],M,mw) is a complete measure space and we denote
the Wiener integral of a functional F by

∫
C0[0,T ] F (x) dmw(x).

Let C, C+ and C∼+ denote the set of complex numbers, complex num-
bers with positive real part, and nonzero complex numbers with non-
negative real part, respectively.

A subset E of C0[0, T ] is said to be scale-invariant measurable pro-
vided αE is measurable for each α > 0, and a scale-invariant measurable
set N is said to be scale-invariant null provided mw(αN) = 0 for each
α > 0. A property that holds except on a scale-invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.). If two functionals F
and G are equal s-a.e., then we write F ≈ G.

Let F be a C-valued scale-invariant measurable functional on C0[0, T ]
such that

(2.1) J(λ) =
∫

C0[0,T ]
F (λ−1/2Zh(x, ·)) dmw(x)

exists as a finite number for all real λ > 0 where Zh is the Gaussian
process

(2.2) Zh(x, t) =
∫ t

0
h(s) d̃x(s)

where h is in L2[0, T ] and
∫ t
0 h(s) d̃x(s) denotes the Paley-Wiener- Zyg-

mund(P.W.Z) integral [2]. If there exists an analytic function J∗(λ) on
C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the
generalized analytic Wiener integral of F over C0[0, T ] with parameter
λ, and for λ ∈ C+ we write

(2.3)
∫ anwλ

C0[0,T ]
F (Zh(x, ·)) dmw(x) = Iλ

a (F ) = J∗(λ).

Let F be a functional on C0[0, T ] such that Iλ
a (F ) exists for all λ ∈

C+. If the following limit exists for nonzero real q, then we call it the
generalized analytic Feynman integral of F over C0[0, T ] with parameter
q and we write

(2.4) Iq
a(F ) = lim

λ→−iq
Iλ
a (F )

where λ → −iq through C+. When h ≡ 1, the generalized analytic
Wiener integral and the generalized analytic Feynman integral reduced
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to the analytic Wiener integral and the analytic Feynman integral, re-
spectively [6,10].

For λ ∈ C+ and y ∈ C0[0, T ], let

(2.5) (Tλ,h(F ))(y) =
∫ anwλ

C0[0,T ]
F (Zh(x, ·) + y) dmw(x).

Definition 2.1. Let q be a non-zero real number. We define the L1

analytic generalized Fourier-Feynman transform T
(1)
q,h (F ) of F by

(2.6) (T (1)
q,h (F ))(y) = lim

λ→−iq
(Tλ,h(F ))(y)

for s-a.e. y ∈ C0[0, T ], where λ → −iq through C+.

The Banach algebra S [2] consists of functionals on C0[0, T ] express-
ible in the form

(2.7) F (y) =
∫

L2[0,T ]
exp{i(u, y)} dµ(u)

for s-a.e. y in C0[0, T ] where µ is an element of M(L2[0, T ]), the space
of all C-valued countably additive Borel measures on L2[0, T ], and (u, y)
denotes the P.W.Z. integral

∫ T
0 u(t) d̃y(t).

The following theorem is the existence theorem for L1 analytic gen-
eralized Fourier-Feynman transform of functions in the Banach algebra
S introduced by Huffman, Park and Skoug [10].

Theorem 2.2. ([10]) Let F ∈ S be given by (2.7). Then for each
λ ∈ C+,

(2.8) Tλ,h(F )(y) =
∫

L2[0,T ]
exp

{
i(v, y)− 1

2λ
‖vh‖2

2

}
dµ(v)

for s-a.e. y ∈ C0[0, T ]. Moreover L1 analytic generalized Fourier-
Feynman transform of F exists for all real q 6= 0 and is given by

(2.9) T
(1)
q,h (F )(y) =

∫

L2[0,T ]
exp

{
i(v, y)− i

2q
‖vh‖2

2

}
dµ(v)

for s-a.e. y ∈ C0[0, T ].
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3. A change of scale formula for functionals in S

In this section, we discuss a change of scale formula for generalized
Wiener integrals of functions in S using the Fourier–Feynman transform
on classical Wiener space.

We next introduce an integration formula which plays an important
role in this section. This lemma is obtained by using the similar method
as in the proof of Lemma 2 and 3 in [4] and hence we will state it without
proof.

Lemma 3.1. Let λ be in C+, h ∈ L∞[0, T ] with 1/h in L∞[0, T ] and
v ∈ L2[0, T ]. Let {α1, α2, · · · , αn} be a subset in L2[0, T ] such that
{α1h, α2h, · · · , αnh} are orthonormal on L2[0, T ]. Then

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·) + y)
}

dmw(x)

= λ−n/2 exp
{λ− 1

2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2 + i(v, y)
}

,

where 〈·, ·〉 denotes the inner product on L2[0, T ].

Let h be in L∞[0, T ] with 1/h in L∞[0, T ] and let Zh(x, t) be given by
(2.2). Let {γ1, · · · , γk, · · · } be a complete orthonormal set on L2[0, T ].
Now we set

αk = γk/h for k = 1, 2, 3, · · · ,(3.1)

and then the αk’s clearly belong to L2[0, T ].
In the following theorem, we give relationships between the general-

ized Wiener integral and Tλ,h(F )(y).

Theorem 3.2. Let F ∈ S be given by (2.7). Let q be a non-zero real
number and let {αk} be given as in (3.1). Then for each λ ∈ C+, we
have

Tλ,h(F )(y) = lim
n→∞λn/2

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

(3.2)

×F (Zh(x, ·) + y) dmw(x)

Proof. Since F ∈ S we have

F (x) =
∫

L2[0,T ]
exp {i(v, x)} dµ(v),
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for some µ ∈ M(L2[0, T ]). By Fubini theorem and Lemma 3.1, we obtain
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·) + y)dmw(x)(3.3)

=
∫

C0[0,T ]

∫

L2[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·) + y)
}

× dµ(v)dmw(x)

=
∫

L2[0,T ]

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2

+ i(v, Zh(x, ·) + y)
}

dmw(x)dµ(v)

= λ−n/2

∫

L2[0,T ]
exp

{λ− 1
2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2 + i(v, y)
}

dµ(v).

By the Parseval’s relation, we obtain that

lim
n→∞

n∑

k=1

〈αkh, vh〉2 = ‖vh‖2
2.(3.4)

Using the bounded convergence theorem, equations (3.4), (3.3) and (2.8),
we obtain

lim
n→∞λn/2

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

×F (Zh(x, ·) + y)dmw(x)

=
∫

L2[0,T ]
exp

{
i(v, y)− 1

2λ
‖vh‖2

2

}
dµ(v)

= Tλ,h(F )(y)

which completes the proof.

The following is a relationship between generalized Wiener integral
and the L1 analytic generalized Fourier-Feynman transform. It follows
from Theorem 3.2 and (2.9).

Theorem 3.3. Let F ∈ S be given by (2.7). Let q be a non-zero real
number and let {αn} be given as in (3.1). Let {λn} be a sequence of
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complex numbers with Reλn > 0 such that λn → −iq. Then

T
(1)
q,h (F )(y) = lim

n→∞λn/2
n

∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

(3.5)

× F (Zh(x, ·) + y) dmw(x)

for s-a.e. y ∈ C0[0, T ].

The next theorem shows our change of scale formula for generalized
Wiener integrals on Wiener space which follows from Theorem 3.2 above.

Theorem 3.4. Let F and {αn} be given as in Theorem 3.3. Then
for every ρ > 0,∫

C0[0,T ]
F (Zh(ρx, ·) + y) dmw(x)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

(αk, Zh(x, ·))2
}

× F (Zh(x, ·) + y) dmw(x)

(3.6)

for s-a.e. y ∈ C0[0, T ].

Proof. First note that for λ > 0, Tλ,h(F ) is given by

Tλ,h(F ) =
∫

C0[0,T ]
F (λ−

1
2 Zh(x, ·) + y)dmw(x)

by the equation (2.5). Letting λ = ρ−2 in Theorem 3.2, we can get the
equation (3.6).

4. A change of scale formula for unbounded functions

Cameron and Storvick [5] introduced a class of functions of the form

(4.1) F (x) = G(x)Ψ((α1, x), (α2, x), · · · , (αr, x))

for G ∈ S and Ψ = ψ + φ where ψ ∈ Lp(Rr), 1 ≤ p < ∞, αk’s given as
in (3.1) in Section 3, and φ ∈ M̂(Rr), the set of functions φ defined on
Rr by

(4.2) φ(~s) =
∫

Rr

exp
{

i
r∑

k=1

sktk

}
dρ(~t)

where ρ is a complex Borel measure of bounded variation on Rr, ~s =
(s1, · · · , sr) and ~t = (t1, · · · , tr). They showed that the above functions
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(4.1) which need not be bounded or continuous are analytic Feynman
integrable.

In this section, we establish a change of scale formula for general-
ized Wiener integrals of functions of the form (4.1) using the Fourier–
Feynman transform on classical Wiener space.

To simplify the expressions, we use the following notations:

(~α, x) = ((α1, x), (α2, x), · · · , (αr, x))

and
(~αh, x) = ((α1h, x), (α2h, x), · · · , (αrh, x)).

The following theorem is the existence theorem for L1 analytic gen-
eralized Fourier-Feynman transform of functions having a type (4.1)
above. Using the similar methods as in the proof of Cameron and Stor-
vick’s theorem, we obtain the following existence theorem and so we will
state it without proof.

Theorem 4.1. Let F (x) = G(x)ψ((~α, x)) where G ∈ S, ψ ∈ Lp(Rr)
and 1 ≤ p < ∞. Then for each λ ∈ C+,

Tλ,h(F )(y) =
( λ

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{ 1

2λ

[ r∑

k=1

(iλuk + 〈αkh, vh〉)2(4.3)

− ‖vh‖2
2

]
+ i(v, y)

}
ψ(~u + (~α, y))d~u dµ(v)

for s−a.e. y ∈ C0[0, T ]. Moreover if p = 1, the L1 analytic generalized
Fourier-Feynman transform of F exists for all real q 6= 0 and is given by

T
(1)
q,h (F )(y) =

(
− iq

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{ i

2q

[ r∑

k=1

(quk + 〈αkh, vh〉)2(4.4)

− ‖vh‖2
2

]
+ i(v, y)

}
ψ(~u + (~α, y))d~u dµ(v)

for s−a.e. y ∈ C0[0, T ].

Theorem 4.2. Let F (x) = G(x)φ((~α, x)) where G ∈ S and φ ∈
M̂(Rr). Then for each λ ∈ C+,

Tλ,h(F )(y) =
∫

L2[0,T ]

∫

Rr

exp
{
− 1

2λ

[
‖vh‖2

2 +
r∑

k=1

2tk〈αkh, vh〉(4.5)

+
r∑

k=1

t2k

]
+ i(v, y) + i

r∑

k=1

tk(αk, y)
}

dρ(~t) dµ(v)
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for s−a.e. y ∈ C0[0, T ]. Moreover, for any 1 ≤ p < ∞, the Lp analytic
generalized Fourier-Feynman transform of F exists for all real q 6= 0 and
is given by

T
(p)
q,h (F )(y) =

∫

L2[0,T ]

∫

Rr

exp
{
− i

2q

[
‖vh‖2

2 +
r∑

k=1

2tk〈αkh, vh〉(4.6)

+
r∑

k=1

t2k

]
+ i(v, y) + i

r∑

k=1

tk(αk, y)
}

dρ(~t) dµ(v)

for s−a.e. y ∈ C0[0, T ].

Now we give a relationship between Tλ,h(F ) and generalized Wiener
integral.

Theorem 4.3. Let {αk} be given as in (3.1). Let F (x) = G(x)
ψ((~α, x)) where G ∈ S and ψ ∈ Lp(Rr), 1 ≤ p < ∞. Then for each
λ ∈ C+, we have

Tλ,h(F )(y) = lim
n→∞λn/2

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

(4.7)

×F (Zh(x, ·) + y) dmw(x).

Proof. Let n be a natural number with n > r and let

Γ(n) =
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·) + y) dmw(x).

By the Fubini theorem, we obtain

Γ(n)

=
∫

L2[0,T ]

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·) + y)
}

× ψ ((~α1, Zh(x, ·) + y)) dmw(x) dµ(v)

=
( λ

2π

)r/2
λ−n/2 exp

{λ− 1
2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2 + i(v, y)
}

×
∫

L2[0,T ]

∫

Rr

exp
{ 1

2λ

r∑

k=1

(iλuk + 〈αkh, vh〉)2
}

× ψ(~u + (~α, y)) d~u dµ(v).

(4.8)
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Note that, by the Bessel inequality, we have
∣∣∣exp

{λ− 1
2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2 + i(v, y)

+
1
2λ

r∑

k=1

(iλuk + 〈αkh, vh〉)2
}

ψ(~u + (~α, y))
∣∣∣

≤ exp
{
−Reλ

2

r∑

k=1

u2
k

}
|ψ(~u + (~α, y))|

and the right hand side of the last inequality is integrable on L2[0, T ]×
Rr, since ψ ∈ Lp(Rr) and µ ∈ M(L2[0, T ]). Hence by the dominated
convergence theorem and the Parseval’s relation, we obtain

lim
n→∞λn/2Γ(n) =

( λ

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{ 1

2λ

[ r∑

k=1

(
iλuk

+ 〈αkh, vh〉)2−‖vh‖2
2

]
+ i(v, y)

}
ψ(~u + (~α, y)) d~u dµ(v).

Now by (4.3) the proof is completed.

Moreover if p = 1, we obtain the following relationships between
the L1 analytic generalized Fourier-Feynman transform and generalized
Wiener integral for functionals in (4.1).

Theorem 4.4. Let {αk} be given as in Theorem 4.3. Let F (x) =
G(x)ψ((~α, x)) where G ∈ S and ψ ∈ L1(Rr) and let {λn} be a sequence
of complex numbers in C+ such that λn −→ −iq. Then

T
(1)
q,h (F )(y) = lim

n→∞λn/2
n

∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

(4.9)

×F (Zh(x, ·) + y) dmw(x).

Proof. We can obtain the following equation from the equation (4.8),

λn/2
n

∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·) + y) dmw(x)

= λn/2
n

(λn

2π

)r/2
λn

−n/2

∫

L2[0,T ]
exp

{λn − 1
2λn

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2

+ i(v, y)
}∫

Rr

exp
{ 1

2λn

r∑

k=1

(iλnuk+〈αkh, vh〉)2
}

ψ(~u+(~α, y)) d~u dµ(v).

(4.10)
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Letting n →∞ in equation (4.10) and using the dominated convergence
theorem and by the equation (4.4), we have that for s-a.e. y ∈ C0[0, T ],

lim
n→∞

(λn

2π

)r/2
∫

L2[0,T ]
exp

{λn − 1
2λn

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2 + i(v, y)
}

×
∫

Rr

exp
{ 1

2λn

r∑

k=1

(iλnuk + 〈αkh, vh〉)2
}

× ψ(~u + (~α, y)) d~u dµ(v)

=
(
− iq

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{ i

2q

[ r∑

k=1

(quk + 〈αkh, vh〉)2 − ‖vh‖2
2

]

+ i(v, y)
}

ψ(~u + (~α, y)) d~u dµ(v)

= T
(1)
q,h (F )(y).

Therefore, we have the desired result.

Theorem 4.5. Let {αk} be given as in (3.1). Let F (x) = G(x)
φ((~α, x)) where G ∈ S and φ ∈ M̂(Rr). Then equation (4.7) holds.

Proof. Let n be a natural number with n > r and let Γ(n) be the
same as in the proof of Theorem 4.3. By the Fubini theorem, we have

Γ(n)

=
∫

L2[0,T ]

∫

Rr

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·) + y)

+ i
r∑

k=1

tk(αk, Zh(x, ·) + y)
}

dmw(x) dρ(~t) dµ(v)

= λ−n/2

∫

L2[0,T ]

∫

Rr

exp
{λ− 1

2λ

n∑

k=1

〈αkh, vh〉2 − 1
λ

r∑

k=1

tk〈αkh, vh〉

− 1
2λ

r∑

k=1

t2k −
1
2
‖vh‖2

2 + i(v, y) + i
r∑

k=1

tk(αk, y)
}

dρ(~t) dµ(v).

Using the Bessel inequality, we have that the exponential of the last
expression above is bounded in absolute value by unity. Hence by the
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dominated convergence theorem and the Parseval’s relation, we obtain

lim
n→∞λn/2Γ(n)

=
∫

L2[0,T ]

∫

Rr

exp
{
− 1

2λ

[
‖vh‖2

2 +
r∑

k=1

2tk〈αkh, vh〉+
r∑

k=1

t2k

]

+ i(v, y) + i
r∑

k=1

tk(αk, y)
}

dρ(~t) dµ(v).

By (4.5), the proof is completed.

Modifying the proof of Theorem 4.5, by replacing “λ” and “λk” when-
ever it occurs and using (4.6) instead of (4.5) we have the following
corollary.

Corollary 4.6. Let {αk} and {λk} be given as in Theorem 4.4 and
let F be given as in Theorem 4.5. Then equation (4.9) holds.

From Theorem 4.3 and Theorem 4.5, and the linearity of the ana-
lytic Wiener integral on classical Wiener space, we obtain the following
corollaries.

Corollary 4.7. Let {αk} be given as in Theorem 4.3. Let F (x) =
G(x)Ψ((~α, x)) where G ∈ S and Ψ = ψ + φ ∈ Lp(Rr) + M̂(Rr), 1 ≤ p <
∞. Then equation (4.7) holds.

Corollary 4.8. Let{αk} and {λk} be given as in Theorem 4.4. Let

F (x) = G(x)Ψ((~α, x)) where G ∈ S and Ψ = ψ + φ ∈ L1(Rr) + M̂(Rr).
Then equation (4.9) holds.

Our main result, namely, a change of scale formula for generalized
Wiener integrals follows from Corollary 4.7.

Theorem 4.9. Let {αk} be given as in Theorem 4.3. Let F (x) =
G(x)Ψ((~α, x)) where G ∈ S and Ψ = ψ + φ ∈ Lp(Rr) + M̂(Rr), 1 ≤ p <
∞. Then for any ρ > 0,∫

C0[0,T ]
F (ρZh(x, ·) + y) dν(x)(4.11)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

(αk, Zh(x, ·))2
}

×F (Zh(x, ·) + y) dmw(x).

Proof. By letting λ = ρ−2 in (4.7), we have equation (4.11).
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Corollary 4.10. When h ≡ 1 in Theorem 4.9, we obtain the change
of scale formula for Wiener integrals of functions of the form (4.1) in-
troduced in [11] and [15] .
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