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ON A CLASS OF GENERALIZED FUNCTIONS FOR SOME

INTEGRAL TRANSFORM ENFOLDING KERNELS OF

MEIJER G FUNCTION TYPE

Shrideh Khalaf Al-Omari

Abstract. In this paper, we investigate a modified G2 transform on a
class of Boehmians. We prove the axioms which are necessary for es-

tablishing the G2 class of Boehmians. Addition, scalar multiplication,

convolution, differentiation and convergence in the derived spaces have
been defined. The extended G2 transform of a Boehmian is given as a

one-to-one onto mapping that is continuous with respect to certain con-

vergence in the defined spaces. The inverse problem is also discussed.

1. Introduction

H functions are generalization of the hypergeometric function pFq which are
utilized for applications in a large variety of problems connected with statistical
distribution theory, structures of random variables, generalized distributions,
Mathai’s pathway models, versatile integrals, reaction, diffusion, reaction dif-
fusion, engineering, communications, fractional differential and integral equa-
tions, many areas of theoretical physics and statistical distribution theory as
well.

The interest of integral transforms with special function kernels was moti-
vated by the desire to study the corresponding integral equations of the first
kind and of the so-called dual and triple equations encountered in various ap-
plications.

Some generalization, through a special case of H transforms [8,10,11,13,14,
21, 22], was proposed as the G transform which partially includes the classical
Laplace and Hankel transforms, Riemann-Liouville fractional integral trans-
forms, odd and even Hilbert transforms, integral transforms with Gauss hyper-
geometric functions, and some others to mention but a few.
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Kilbas and Saigo in [12] have investigated certain types of modified G trans-
forms on the summable space Lv,r, v ∈ R, 1 ≤ v <∞, of those complex valued
Lebesgue measurable functions such that

(1) ‖ψ‖v,r =

(∫ ∞
0

|σvψ (σ)|r dσ
σ

) 1
r

<∞.

In this paper, we consider a modified transform defined by the integral equation
[12, 6.2.2]

(2)
(
G2ψ

)
(ξ) =

∫ ∞
0

Gm,np,q

[
σ

ξ

∣∣∣∣ (ai)1,p

(bj)1,q

]
ψ (σ)

dσ

ξ
,

where Gm,np,q is a G function. For sufficiently good function ψ, the modified G2

transform has a close associate with the ordinary G transform

(3) (Gψ) (ξ) =

∫ ∞
0

Gm,np,q

[
ξσ

∣∣∣∣ (ai)1,p

(bj)1,q

]
ψ (σ) dσ

noticed as
(
G2ψ

)
(ξ) = (RGψ) (ξ) , where R has the usual meaning as [12,

3.3.13]

(Rψ) (ξ) =
1

ξ
ψ

(
1

ξ

)
.

In this article it is of great importance to mention that the cited integral (2)
satisfies the equation

(4)
(
MlG

2ψ
)

(ω) = gm,np,q

[
1− ω

∣∣∣∣ (ai)1,p

(bj)1,q

]
(Mlψ) (ω) ,

where

gm,np,q

[
ω

∣∣∣∣ (ai)1,p

(bj)1,q

]
=

∏m
j=1 Γ (bj + ω)

∏n
i=1 Γ (1− ai − ω)∏p

i=n+1 Γ (ai + ω)
∏q
j=m+1 Γ (1− bj − ω)

,

Mlψ being the Mellin transform of ψ (t).
The Parseval formula for G2 transform was expressed in terms of the iden-

tities:

(5)

∫ ∞
0

ψ (ξ)
(
G2δ

)
(ξ) dξ =

∫ ∞
0

(
G1ψ

)
(ξ) δ (ξ) dξ

and

(6)

∫ ∞
0

ψ (ξ)
(
G1δ

)
(ξ) dξ =

∫ ∞
0

(
G2ψ

)
(ξ) δ (ξ) dξ,

where G1 is the modified transform defined by [12, 6.2.1](
G1ψ

)
(ξ) =

∫ ∞
0

Gm,np,q

[
ξσ

∣∣∣∣ (ai)1,p

(bj)1,q

]
ψ (σ)

dσ

σ
.
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The numbers a∗,∆, a∗1, a
∗
2, α and β wherever they appear have the benefit of:

(7)



a∗ = 2 (m+ n)− p− q;
∆ = q − p;
a∗1 = m+ n− p;
a∗2 = m+ n− q;

α =

{
−min1≤j≤m Re (bj) ,m > 0
−∞ ,m = 0

β =

{
1−max1≤i≤n Re (ai) , n > 0
∞ , n = 0

and

µ =
∑q
j=1 bj −

∑p
i=1 aj +

p− q
2

.

Following theorem is due to Kilbas and Saigo [12, Theorem 6.26(i)].

Theorem 1. We suppose (i)α < 1− v < β and that either of the conditions
(ii) a∗ > 0 or (iii) a∗ = 0, ∆ (1− v) + Re (µ) ≤ 0 holds. Then, we have the
following results:

(a) There is a one-to-one transform G2 ∈ [Lv,2,Lv,2] and there holds Equa-
tion (4) for Re (ω) = v and ψ ∈ Lv,2.

(b) If a∗ = 0,∆ (1− v) + Re (µ) = 0 and v /∈ εg, then the transform G2

maps Lv,2 onto Lv,2, where εg is the exceptional set of

g (ω) = Gm,np,q

[
ω

∣∣∣∣ (ai)1,p

(bj)1,q

]
of real numbers v such that α < 1− v < β and g (ω) has a zero on the
line Re (ω) = 1− v.

For a somehow much more detailed account of several significant results on
the modified G transforms, we refer to the monograph [12].

Integral transforms of the generalized space of Boehmians were defined in
many papers once the topic started. In the survey articles [1, 3, 5, 17] and
[2, 4, 6, 7, 9, 15, 16, 18, 19], various integral transforms were extended to various
spaces of Boehmians. Throughout this paper, we aim to extend the so-called
modified G2 transform to some class of Boehmians and discuss some related
results. In the following section we present some fundamental convolution
products for generating the generalized spaces and give the definition of the
extended transform on the generalized spaces. In Section 3 we derive some
properties of our transform in a generalized sense.

2. Generalized spaces of Boehmians

The concept of Boehmians is motivated by regular operators introduced by
Boehme [9]. Boehmians have an algebraic character of Mikusinski operators
and at the same time do not have restriction on the support. Applying the gen-
eral construction to various function spaces yields various spaces of Boehmians.
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General Boehmians contain the Schwartz space of distributions , Roumieu ul-
tradistributions, regular operators and tempered distributions as well.

As our main product, we shall make a free use of the product • that we
define here as

(8) (ψ • δ) (ξ) =

∫ ∞
0

ψ
(
ς−1ξ

)
ς−1δ (ς) dς,

when the integral exists. On the other hand, the second integral, which is
identical to our definition (8) , is the Mellin type convolution product defined
by [20]

(9) (ψ × δ) (ξ) =

∫ ∞
0

ζ−1ψ
(
ξζ−1

)
δ (ζ) dζ,

whose integral properties are as follows identities:
(i) ψ1 × ψ2 = ψ2 × ψ1;
(ii) (ψ1 × ψ2)× ψ3 = ψ1 × (ψ2 × ψ3) ;
(iii) (αψ1)× ψ2 = α (ψ1 × ψ2) ;
(iv) ψ1 × (ψ2 + ψ3) = ψ1 × ψ2 + ψ1 × ψ3.

By C∞c we denote the standard notation of the set of smooth functions of
compact supports on (0,∞) , and by ∆ we denote the subset of C∞c of delta
sequences satisfying Conditions (10)-(12),

(10)

∫ ∞
0

δn (ξ) dξ = 1 for every n ∈ N.

(11) |δn (ξ)| < M for every n ∈ N, where M ∈ R,M > 0.

(12) supp δn (ξ) ⊂ (an, bn) , where an, bn → 0 as n→∞.
For the modified transform, we are generating some generalized function spaces
of Boehmians, β (Lv,2,×, •) and β (Lv,2,×) , with fairly cited products.

It worthwhile that we establish the following lemma.

Lemma 2. Given that ψ ∈ Lv,2 and δ ∈ C∞c . Then, we have G2 (ψ × δ) (ξ) =((
G2ψ

)
• δ
)

(ξ) .

Proof. Assume ψ ∈ Lv,2 and δ ∈ C∞c be given. Then, by (9) we write

G2 (ψ × δ) (ξ) =

∫ ∞
0

Gm,np,q

[
ξ

σ

∣∣∣∣ (ai)1,p

(bj)1,q

] ∫ ∞
0

ζ−1ψ
(
σζ−1

)
δ (ζ) dζ

dσ

ξ
.

Setting variables, σ−1ζ = ρ, gives

(13) G2 (ψ × δ) (ξ) =

∫ ∞
0

δ (ζ) ζ−1

∫ ∞
0

Gm,np,q

[
ζρ

ξ

∣∣∣∣ (ai)1,p

(bj)1,q

]
ψ (ρ)

dρ

ξ
.

Modifying (13) yields

G2 (ψ × δ) (ξ) =

∫ ∞
0

δ (ζ) ζ−1

∫ ∞
0

Gm,np,q

[
ρ

ζ−1ξ

∣∣∣∣ (ai)1,p

(bj)1,q

]
ψ (ρ)

dρ

ζ−1ξ
.
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Hence, we have obtained

G2 (ψ × δ) (ξ) =

∫ ∞
0

(
G2ψ

) (
ζ−1ξ

)
ζ−1δ (ζ) dζ.

This reveals

G2 (ψ × δ) (ξ) =
(
G2ψ • δ

)
(ξ) .

Hence, the proof of this theorem has been finished. �

Let us first consider several axioms that are in charge of defining the space
β (Lv,2,g, •).

Theorem 3. Given that ψ ∈ Lv,2 and δ ∈ C∞c . Then, we have ψ • δ ∈ Lv,2.

Proof. By aid of Equation (1) and Equation (8), we write

(14) ‖ψ • δ‖2v,2 =

∫ ∞
0

∣∣∣∣σv ∫ ∞
0

ψ
(
ζ−1σ

)
ζ−1δ (ζ) dζ

∣∣∣∣2 dσσ .

Appealing to Fubini’s theorem and Jensen’s inequality, (14) reduces to

‖ψ • δ‖2v,2 ≤ ‖ψ‖
2
v,2

∫ b

a

∣∣ζ−1δ (ζ)
∣∣ dζ

< A ‖ψ‖2v,2 ,

where [a, b] is a real bounded set containing the support of δ, A > 0, A ∈ R.
Hence, we have reached to the conclusion that

ψ • δ ∈ Lv,2.

The proof is therefore finished. �

Theorem 4. Given that (δn) , (εn) ∈ ∆. Then, we have (δn × εn) ∈ ∆.

Proof of this theorem follows from the properties of the product g. Details
are deleted.

Proof of the following theorems is straightforward.

Theorem 5. Given that (ψn) , ψ ∈ Lv,2 and δ ∈ C∞c . Then, we have

ψn • δ → θ • δ and (r∗ψn) • δ = r∗ (ψn • δ) , r∗ ∈ C.

Theorem 6. Given that ψ1, ψ2 ∈ Lv,2 and δ ∈ C∞c . Then, we have

(ψ1 + ψ2) • δ = ψ1 • δ + ψ2 • δ.

Theorem 7. Given that ψ ∈ Lv,2 and δ1, δ2 ∈ C∞c . Then, the following hold

(i) ψ • (δ1 × δ2) = (ψ • δ1) • δ2.
(ii) If (δn) ∈ ∆ and ψ ∈ Lv,2, then ψ • δn → ψ as n→∞.
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Proof. Proof of (i) is a straightforward consequence of the properties of Mellin
convolution products. For more details, let ψ ∈ Lv,2 and δ1, δ2 ∈ C∞c . Then,
by Equation (8), we have

(ψ • (δ1 × δ2)) (ξ) =

∫ ∞
0

ψ
(
ζ−1ξ

)
ζ−1 (δ1 × δ2) (ζ) dζ.

Equation (9) reveals that

(ψ • (δ1 × δ2)) (ξ) =

∫ ∞
0

ψ
(
ζ−1ξ

)
ζ−1

∫ ∞
0

σ−1δ
(
ζσ−1

)
δ2 (σ) dσdζ.

Change of variables, ζσ−1 = ρ, and Fubini’s theorem imply

(ψ • (δ1 × δ2)) (ξ) =

∫ ∞
0

δ2 (σ)σ−1

∫ ∞
0

ψ
(
y−1ξ

)
y−1δ1

(
yσ−1

)
dζdσ

=

∫ ∞
0

δ2 (σ)σ−1 (ψ • δ1)
(
σ−1ξ

)
dσ.(15)

We have therefore finished the proof of Part (i) of the theorem.
Proof of Part (ii) . Assume (δn) ∈ ∆ and ψ ∈ Lv,2 be given, then by

Equation (11) we have

(16) |δn (ξ)| < M

for some positive real number M. By Equation (12) we also have

(17) supp δn (ξ) ⊆ (an, bn) , (an, bn)→ 0 as n→∞.

Hence, using the set of norms of Lv,2 gives

‖(ψ • δn − ψ) (σ)‖2v,2 =

∫ ∞
0

|σv (ψ • δn − ψ) (σ)|2 dσ
σ

which can written by (10) in the form

‖(ψ • δn − ψ) (σ)‖2v,2 =

∫ ∞
0

∣∣∣∣σv (∫ ∞
0

(
ψ
(
ζσ−1

)
ζ−1 − ψ (σ)

)
δn (ζ) dζ

)∣∣∣∣2 dσσ .

By Equation (16) and Equation (17) , we finally get

(18) ‖(ψ • δn − ψ) (σ)‖2v,2 ≤ AM (an, bn) ,

where A and M are positive constants.
Hence, considering the limit as n→∞, we from (18) obtain

ψ • δn → ψ as n→∞.

This finishes the proof of the theorem. �

Theorem 8. Given ψ • δn = ψ1 • δn, where ψ,ψ1 ∈ Lv,2 and (δn) ∈ ∆. Then
ψ = ψ1.
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Proof of this theorem follows from Theorem 7(ii) . Proof is therefore omit-

ted.
The axioms of our space are established. Hence, the space under considera-

tion is well-defined.
Addition in β (Lv,2,×, •) is defined as ϕn

δn
+ ψn

εn
= ϕn•δn+ψn•δn

δn×εn . Scalar

multiplication in β (Lv,2,×, •) is defined as Ωϕn
δn

= Ωϕn
δn

= Ωϕn
δn

, Ω ∈ C. We

define the convolution • in β (Lv,2,×, •) as ϕn
δn
• ψnεn = ϕn•ψn

δn×εn . Differentiation in

β (Lv,2,×, •) is defined as Dα ϕnδn = Dαϕn
δn

, α is a real number. The product •
for β (Lv,2,×, •)×Lv,2 we define as ϕn

δn
•ϕ = ϕn•ϕ

δn
, where ϕn

δn
∈ β (Lv,2,×, •) and

ϕ ∈ Lv,2. A sequence (βn) of β (Lv,2,×, •) is δ convergent to β in β (Lv,2,×, •)(
βn

δ→ β
)

if there exists a delta sequence (δn) such that

(βn • δk) , (β • δk) ∈ Lv,2 (∀k, n ∈ N) ,

and

(βn • δk)→ (β • δk) as n→∞, in Lv,2 for every k ∈ N.

The equivalent argument of δ convergence is that : βn
δ→ β (n→∞) in

β (Lv,2,×, •) if and only if there is ϕn,k, ϕk ∈ Lv,2 and δk ∈ ∆ such that

βn =
ϕn,k
δk

, β = ϕk
δk

and for each k ∈ N, ϕn,k → ϕk as n→∞ in Lv,2.

A sequence (βn) of β (Lv,2,×, •) is ∆ convergent to β in β (Lv,2,×, •)(
or βn

∆→ β
)

if there exists a (δn) ∈ ∆ such that (βn − β) • δn ∈ Lv,2,∀n ∈ N,
and (βn − β) • δn → 0 as n→∞ in Lv,2.

Generating the space β (Lv,2,×) follows from similar proofs to above and in
taking into account properties of the product × recited above.

The operations: addition, multiplication by a scalar and convergence in β(Lv,2,
×) can be extended to β (Lv,2,×, •) similarly. Hence we avoid repeating same
arguments.

With the help of Lemma 2, and the preceding debates we are lead to the
following definition.

Definition 9. Given α < 1 − v < β and that either of the conditions (ii) or
(iii) of Theorem 1 holds. We consider to define the extended G2 transform of
ψn
δn
∈ β (Lv,2,×) as

(19) G2,b
ex.

ψn
δn

=
G2ψn
δn

in β (Lv,2,×, •) .

The numerator of the right hand side of Equation (19) belongs to Lv,2.
Hence, the equivalence class (19) defines a Boehmian in the space β (Lv,2,×, •)
by Lemma 2.
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3. Abelian theorems for G2,b
ex. transform

Theorem 10. Given α < 1− v < β and that either of the conditions (ii) or
(iii) of Theorem 1 holds. Then, the operator G2,b

ex. is well-defined and linear
from β (Lv,2,×) into β (Lv,2,×, •).

Proof. Assume ψn
δn

= ϕn
εn
∈ β (Lv,2,×) and the hypothesis of the theorem sat-

isfies. Then by the notion of equivalence classes of β (Lv,2,×) it holds that

ϕn × δm = ψm × εn = ψn × εm (∀n,m ∈ N) .

Employing G2 transform for both sides of the previous equation and investing
Lemma 2 suggest to write

G2ϕn • δm = G2ψn • εm (∀n,m ∈ N) .

Thus, the quotients G2ϕn
εn

and G2ψn
δn

are equivalent in the sense of β (Lv,2,×, •)
and, consequently,

G2ϕn
εn

=
G2ψn
δn

(∀n ∈ N) .

Proof of linearity of G2,b
ex. is as follows. Let ϕn

εn
, ψnδn ∈ β (Lv,2,×) (∀n ∈ N) .

Then, by Lemma 2 and for all n ∈ N we have

G2,b
ex.

(
ϕn
εn

+
ψn
δn

)
= G2,b

ex.

(
ϕn × δn + ψn × εn

εn × δn

)
=
G2 (ϕn × δn + ψn × εn)

εn × δn

=
G2ϕn • δn +G2ψn • εn

εn × δn
.

This is expressed to give G2,b
ex.

(
ϕn
εn

+ ψn
δn

)
= G2,b

ex.
ϕn
εn

+ G2,b
ex.

ψn
δn

(∀n ∈ N) . Let

Ω ∈ C, then of course ΩG2,b
ex.

ϕn
εn

= ΩG2ϕn
εn

= G2Ωϕn
εn

. Hence, we lead to write

ΩG2,b
ex.

ϕn
εn

= G2,b
ex.

(
Ω
ϕn
εn

)
(∀n ∈ N) .

We have finished the proof of the theorem. �

Theorem 11. Under Conditions (i) and (ii) of Theorem 1, the operator
G2,b
ex. : β (Lv,2,×)→ β (Lv,2,×, •) is injective.

Proof. Assume G2,b
ex.

ψn
δn

= G2,b
ex.

ϕn
εn

(∀n ∈ N) . Using the concept of quotients in

β (Lv,2,×, •) implies

G2ψn • εm = G2ϕm • δn (∀m,n ∈ N) .

Lemma 2 also implies G2 (ψn × εm) = G2 (ϕm × δn) (∀m,n ∈ N) . Hence ψn×
εm = ϕm × δn. Therefore

ψn
δn

=
ϕn
εn

(∀n ∈ N) .
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This finishes the proof of our theorem. �

Theorem 12. Given a∗ = 0, ∆ (1− v) + Re (µ) = 0 and v /∈ εg. Then, the
operator G2,b

ex. : β (Lv,2,×)→ β (Lv,2,×, •) is surjective , εg has usual meaning.

Proof of this theorem is obvious by Theorem 1. Hence, we omit details.

Definition 13. Given that Conditions (i) and (ii) of Theorem 1 satisfy and

that ψ̂n
δn
∈ β (Lv,2,×, •). Then, for each (δn) ∈ ∆ and some (ψn) ∈ Lv,2 we

define the inverse G2 transform as

(20)
(
G2,b
ex.

)−1 ψ̂n
δn

=
ψn
δn
.

Theorem 14. Let the identities (i) and (ii) of Theorem 1 satisfy. Then, the

mapping
(
G2,b
ex.

)−1
is well-defined.

Proof. Assume ψ̂n
δn

= ϕ̂n
εn

in β (Lv,2,×, •) . Then, ψ̂n×εm = ϕ̂m×δn (∀m,n ∈ N)

in the sense of β (Lv,2,×, •) . Therefore, applying the inverse G2 transform and
investing Lemma 2 yield(

G2
)−1

ψ̂n • εm =
(
G2
)−1

ϕ̂m • δn.

In β (Lv,2,×), it means
(G2)

−1
ψ̂n

δn
=

(G2)
−1
ϕ̂n

εn
(∀n ∈ N) . This finishes the proof

of the theorem. �

Theorem 15. Let a∗ = 0,∆ (1− v) + Re (µ) = 0 and v /∈ εg. Then the

mapping
(
G2,b
ex.

)−1
is linear from β (Lv,2,×, •) onto β (Lv,2,×).

Proof. Assume the hypothesis satisfies for two Boehmians ψ̂n
δn

and ϕ̂n
δn

in

β (Lv,2,×, •) . Then, for all n ∈ N, we have

ψ̂n
δn

+
ϕ̂n
εn

=
ψ̂n × εn + ϕ̂n × εn

δn × εn
.

Applying Equation (20) to above yields

(
G2,b
ex.

)−1

(
ψ̂n
δn

+
ϕ̂n
εn

)
=

(
G2
)−1

(
ψ̂n × εn + ϕ̂n × εn

)
δn × εn

.

On account of Lemma 2 we get(
G2,b
ex.

)−1

(
ψ̂n
δn

+
ϕ̂n
εn

)
=

(
G2
)−1 (

G2 (ψn • εn) +G2 (ϕn • δn)
)

δn × εn
.

Notion of addition in β (Lv,2,×) implies(
G2,b
ex.

)−1

(
ψ̂n
δn

+
ϕ̂n
εn

)
=
ψn
δn

+
ϕn
εn

(∀n ∈ N) .
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Finally, for some η ∈ C and all n ∈ N, we have(
G2,b
ex.

)−1

(
η
ψ̂n
δn

)
= η

(
G2,b
ex.

)−1 ψ̂n
δn
.

This finishes the proof of the theorem. �

Theorem 16. G2,b
ex. is continuous with respect to δ and ∆ convergence.

Proof of this theorem can be followed similarly as in the citations of the
same author. Hence, we avoid to repeat the similar proofs.

Acknowledgement. The author would like to express many thanks to the
anonymous referees for their corrections and comments on this manuscript.
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