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CONDITIONAL GENERALIZED FOURIER-FEYNMAN

TRANSFORM OF FUNCTIONALS IN

A FRESNEL TYPE CLASS

Seung Jun Chang

Abstract. In this paper we define the concept of a conditional general-
ized Fourier-Feynman transform on very general function space Ca,b[0, T ].
We then establish the existence of the conditional generalized Fourier-

Feynman transform for functionals in a Fresnel type class. We also obtain
several results involving the conditional transform. Finally we present
functionals to apply our results. The functionals arise naturally in Feyn-
man integration theories and quantum mechanics.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space, that is the space of real-
valued continuous functions x(t) on [0, T ] with x(0) = 0. In [21], Yeh introduced
the concept of a conditional Wiener integral and derived a Fourier inversion for-
mula for changing conditional expectations into nonconditional expectations.
In [17], Park and Skoug obtained a very simple formula for expressing condi-
tional Wiener integrals in terms of ordinary Wiener integrals. The authors,
in [21] and [17], derived the Kac-Feynman integral equation for time indepen-
dent potential functions using their own result, respectively. In [2], Chang and
Chung studied the conditional function space integrals and related topics on
a very general function space Ca,b[0, T ] using the vector-valued conditioning
function

(1.1) X(x) = (x(t1), . . . , x(tn)), 0 = t0 < t1 < · · · < tn = T.

In [10], Chang, Choi and Skoug established a very simple formula for expressing
conditional function space integrals in terms of nonconditional function space
integrals using a very general conditioning function X(x) on Ca,b[0, T ] that
need not depend upon the values of X at only finitely many points of (0, T ]
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like in the equation (1.1) above; see the equation (4.2) below. The function
space Ca,b[0, T ] induced by generalized Brownian motion was introduced by
J. Yeh in [19] and was used extensively by Chang and Chung [2], Chang and
Skoug [4], Chang, Choi and Skoug [7–9] and Chang, Chung and Skoug [11].

In [14], Chung and Skoug introduced the concept of a conditional Feyn-
man integral and applied their results to obtain a fundamental solution of
Schrödinger equation, whereas in [18], Park and Skoug introduced the con-
cept of a conditional Fourier-Feynman transform on Wiener space. Other
work involving conditional Feynman integrals and conditional Fourier-Feynman
transforms on Wiener space include [3, 13]. In [8], Chang, Choi and Sk-
oug established various integration by parts formulas for conditional gener-
alized Feynman integrals and conditional generalized Fourier-Feynman trans-
forms(CGFFT) using the conditioning function X(x) = x(T ), x ∈ Ca,b[0, T ].

In this paper, working in the setting of general function space Ca,b[0, T ]
and using the conditioning function X given by the equation (4.2) below, we
introduce a concept of a CGFFT and obtain several results for the CGFFT of
functionals in a Fresnel type class.

The Wiener process used in [3, 13, 14, 17, 18, 21] is stationary in time and is
free of drift while the stochastic process used in [2, 4, 7–10, 11, 19] and in this
paper is nonstationary in time and is subject to a drift a(t). However when
a(t) ≡ 0 and b(t) = t on [0, T ], Ca,b[0, T ] reduces to Wiener space C0[0, T ].

2. Preliminaries

In this section, we briefly list some of the preliminaries from [4, 7, 9] that
we need to establish our results in next sections.

Let (Ca,b[0, T ],B(Ca,b[0, T ]), µ) denote the function space induced by the
generalized Brownian motion Y determined by continuous functions a(t) and
b(t) where B(Ca,b[0, T ]) is the Borel σ-algebra induced by the sup-norm, see
[19, 20]. We assume in this paper that a(t) is an absolutely continuous real-
valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b′(t) > 0 for each t ∈ [0, T ]. Then we can consider the coordinate process
Z : [0, T ]×Ca,b[0, T ] → R given by Z(t, x) = x(t) which is a continuous version
of Y [20]. The generalized Brownian motion Z is a Gaussian process with mean
function a(t) and covariance function r(s, t) = min{b(s), b(t)}.

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.). If two functionals F and G defined on
Ca,b[0, T ] are equal s-a.e., then we write F ≈ G.

Let L2
a,b[0, T ] be the space of functions on [0, T ] which are Lebesgue mea-

surable and square integrable with respect to the Lebesgue-Stieltjes measures
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on [0, T ] induced by a(t) and b(t): i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) <∞ and

∫ T

0

v2(s)d|a|(s) <∞

}
,

where |a|(t) is the total variation function of a(t). Then L2
a,b[0, T ] is a separable

Hilbert space with inner product defined by

(u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

In particular, note that ∥u∥a,b = 0 if and only if u(t) = 0 for mL-a.e. on [0, T ]
where mL is the Lebesgue measure on [0, T ]. Also note that if a(t) ≡ 0 and
b(t) = t, then L2

a,b[0, T ] = L2[0, T ]. In fact,(
L2
a,b[0, T ], ∥ · ∥a,b

)
⊂
(
L2
0,b[0, T ], ∥ · ∥0,b

)
=
(
L2[0, T ], ∥ · ∥2

)
since the two norms ∥ · ∥0,b and ∥ · ∥2 are equivalent.

For each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund(PWZ) stochastic inte-

gral

⟨v, x⟩ = lim
n→∞

∫ T

0

n∑
j=1

(v, ϕj)a,bϕj(t)dx(t)

exists for µ-a.e. x ∈ Ca,b[0, T ], where {ϕj}∞j=1 is a complete orthonormal set of
real-valued functions of bounded variation on [0, T ] such that (ϕj , ϕk)a,b = δjk
(the Kronecker delta). If v is of bounded variation on [0, T ], then the PWZ

stochastic integral ⟨v, x⟩ equals the Riemann-Stieltjes integral
∫ T

0
v(t)dx(t) for

s-a.e. x ∈ Ca,b[0, T ].

Remark 2.1. For each v ∈ L2
a,b[0, T ], the PWZ stochastic integral ⟨v, x⟩ is a

Gaussian random variable on Ca,b[0, T ] with mean
∫ T

0
v(s)da(s) and variance∫ T

0
v2(s)db(s). Note that for all u, v ∈ L2

a,b[0, T ],∫
Ca,b[0,T ]

⟨u, x⟩⟨v, x⟩dµ(x) =
∫ T

0

u(s)v(s)db(s) +

∫ T

0

u(s)da(s)

∫ T

0

v(s)da(s).

Hence we see that for all u, v ∈ L2
a,b[0, T ],

∫ T

0
u(s)v(s)db(s) = 0 if and only if

⟨u, x⟩ and ⟨v, x⟩ are independent random variables.

Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C

′
a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

(2.1) Dtw = z(t) =
w′(t)

b′(t)
.
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Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

∫ T

0

Dtw1Dtw2db(t) =

∫ T

0

z1(t)z2(t)db(t)

is a separable Hilbert space. For more details, see [9, 12].
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C
′
a,b[0, T ] are home-

omorphic under the linear operator given by the equation (2.1).
Throughout this paper, we assume a ∈ C ′

a,b[0, T ] and for notational conve-

nience we will use the notation (w, x)∼ instead of ⟨Dtw, x⟩. Then we have the
following assertions.

(1) For each w ∈ C ′
a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian

with mean (w, a)C′
a,b

and variance ∥w∥2C′
a,b

.

(2) (w,αx)∼ = α(w, x)∼ = (αw, x)∼ for any real number α, w ∈ C ′
a,b[0, T ]

and x ∈ Ca,b[0, T ].
(3) If {w1, . . . , wn} is an orthonormal set in C ′

a,b[0, T ], then the random

variables (wi, x)
∼’s are independent.

We denote the function space integral of a B(Ca,b[0, T ])-measurable func-
tional F by

E[F ] ≡ Ex[F (x)] =

∫
Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.
Throughout this paper, let C, C+ and C̃+ denote the complex numbers, the

complex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part, respectively. For each λ ∈ C̃+, λ

−1/2(or λ1/2) is
always chosen to have positive real part.

3. A Fresnel type class F(Ca,b[0, T ])

We first introduce a Banach algebra of functionals on Ca,b[0, T ] like a Fresnel
class of an abstract Wiener space.

Let M(C ′
a,b[0, T ]) be the space of C-valued, countably additive (and hence

finite) Borel measures on C ′
a,b[0, T ]. M(C ′

a,b[0, T ]) is a Banach algebra under
the total variation norm and with convolution as multiplication.

The Fresnel type class F(Ca,b[0, T ]) of functionals on Ca,b[0, T ] is defined as
the space of all stochastic Fourier transforms of elements of M(C ′

a,b[0, T ]); that

is, F ∈ F(Ca,b[0, T ]) if and only if there exists a measure f in M(C ′
a,b[0, T ])

such that

(3.1) F (x) =

∫
C′

a,b[0,T ]

exp{i(w, x)∼}df(w)

for s-a.e. x ∈ Ca,b[0, T ]. More precisely, since we shall identify functionals
which coincide s-a.e. on Ca,b[0, T ], F(Ca,b[0, T ]) can be regarded as the space
of all s-equivalence classes of functionals of the form (3.1).
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The Fresnel type class F(Ca,b[0, T ]) is a Banach algebra with norm

∥F∥ = ∥f∥ =

∫
C′

a,b[0,T ]

d|f |(w).

In fact, the correspondence f 7→ F is injective, carries convolution into point-
wise multiplication and is a Banach algebra isomorphism where f and F are
related by (3.1).

We adopt the definitions and notations of [4, 7] for the concept of the general-
ized Feynman integral and the generalized Fourier-Feynman transform(GFFT)
of functionals on Ca,b[0, T ].

Remark 3.1. In [4] Chang and Skoug introduced a Banach algebra S(L2
a,b[0, T ])

of functionals on Ca,b[0, T ] given by

S(L2
a,b[0, T ]) =

{
F : F (x) ≈

∫
L2

a,b[0,T ]

exp{i⟨v, x⟩}dσ(v), σ ∈ M
(
L2
a,b[0, T ]

)}
and then showed that the generalized Feynman integral and the GFFT exist
for functionals in S(L2

a,b[0, T ]) under appropriate conditions.

When a(t) ≡ 0 and b(t) = t on [0, T ], S(L2
a,b[0, T ]) reduces to the Banach

algebra S introduced by Cameron and Storvick [1]. For more detailed studies
of Banach algebras of functionals on classical and abstract Wiener spaces, see
[16, pp. 609–629]. Also, for a detailed study of functionals in F(Ca,b[0, T ]), see
[12].

For a positive real number q0 and w ∈ C ′
a,b[0, T ], let

k(q0;w) = exp
{
(2q0)

−1/2∥w∥C′
a,b

∥a∥C′
a,b

}
and let

(3.2) Γq0 =
{
λ ∈ C̃+ :

∣∣∣Im(λ−1/2
)∣∣∣ < (2q0)

−1/2
}
.

Also, for λ ∈ C̃ and w ∈ C ′
a,b[0, T ], let

(3.3) ψ(λ;w) = exp

{
− 1

2λ
∥w∥2C′

a,b
+ λ−1/2(w, a)C′

a,b

}
.

Then for all λ ∈ Γq0 ,

|ψ(λ;w)| ≤ exp
{∣∣∣Im(λ−1/2

)∣∣∣ ∥w∥C′
a,b

∥a∥C′
a,b

}
< k(q0;w).

We note that for all real q with |q| > q0, (−iq)−1/2 = 1/
√

2|q|+ isign(q)/
√

2|q|
and −iq ∈ Γq0 .

For a positive real number q0, we define a subclass Fq0 of F(Ca,b[0, T ]) by

Fq0 =

{
F ∈ F(Ca,b[0, T ]) :

∫
C′

a,b[0,T ]

k(q0;w)d|f |(w) <∞

}
,

where f and F are related by the equation (3.1).
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Remark 3.2. Note that in case a(t) ≡ 0 and b(t) = t on [0, T ], the function space
Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ] and (w, a)C′

a,b
= 0 for

all w ∈ C ′
a,b[0, T ] = C ′

0[0, T ]. Hence for all λ ∈ C̃+, |ψ(λ;w)| ≤ 1 and for any

positive real number q0, Fq0 = F(C0[0, T ]).

We now state a theorem for the GFFT of functionals in F(Ca,b[0, T ]) without
proof. One can see similar results in [4, 5, 6].

Theorem 3.3. Let q0 be a positive real number. Let F ∈ Fq0 be given by
the equation (3.1). Then for all p ∈ [1, 2] and all real q with |q| > q0, the Lp

analytic GFFT of F , T
(p)
q (F ) exists and is given by the formula

(3.4) T (p)
q (F )(y) =

∫
C′

a,b[0,T ]

exp{i(w, y)∼}ψ(−iq;w)df(w)

for s-a.e. y ∈ Ca,b[0, T ], where ψ is given by (3.3). Furthermore, T
(p)
q (F )

belongs to F(Ca,b[0, T ]).

Corollary 3.4. Let q0 and F be as in Theorem 3.3. Then for all real q with
|q| > q0, the generalized analytic Feynman integral of F , Eanfq [F ] exists and is
given by the formula

Eanfq [F ] = T (1)
q (F )(0) =

∫
C′

a,b[0,T ]

ψ(−iq;w)df(w).

4. Conditional generalized Fourier-Feynman transform

In this section for F : Ca,b[0, T ] → C and X : Ca,b[0, T ] → Rn, we first
define the conditional function space integral of F given X which we denote by
E(F |X). Then, using the conditioning function X given by the equation (4.2)
below, we define the conditional generalized Feynman integral Eanfq (F |X) and

the CGFFT T
(p)
q (F |X).

Let X : Ca,b[0, T ] → Rn be a B(Ca,b[0, T ])-measurable functional whose
probability distribution µX is absolutely continuous with respect to Lebesgue
measure on Rn. Let F be a C-valued µ-integrable functional on Ca,b[0, T ].
Then, the conditional function space integral of F given X, denoted by E(F |X)
(η⃗), is a Lebesgue measurable function of η⃗, unique up to null sets in Rn,
satisfying the equation

(4.1)

∫
X−1(B)

F (x)dµ(x) =

∫
B

E(F |X)(η⃗)dµX(η⃗)

for all Borel sets B in Rn.
Let {g1, . . . , gn} be any orthonormal set in C ′

a,b[0, T ]. We note that the

corresponding PWZ stochastic integrals (gj , x)
∼, j = 1, . . . , n, form a set of

independent Gaussian random variables on Ca,b[0, T ]. Let X : Ca,b[0, T ] → Rn

be the Gaussian random vector defined by

(4.2) X(x) = ((g1, x)
∼, . . . , (gn, x)

∼).
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Remark 4.1. We note that the conditioning function X given by the equation
(1.1) is the special case of X given by the equation (4.2) with

gj(t) = [b(tj)− b(tj−1)]
−1/2

∫ t

0

χ[tj−1,tj ](s)db(s)

for j = 1, . . . , n.

Definition 4.2. Let X : Ca,b[0, T ] → Rn be given by the equation (4.2) and
let F : Ca,b[0, T ] → C be a scale-invariant measurable functional such that the

function space integral E[F (λ−1/2·)] exists as a finite number for all λ > 0. For
λ > 0 let

Jλ(η⃗) = E(F (λ−1/2·)|X(λ−1/2·))(η⃗)
denote the conditional function space integral of F (λ−1/2·) given X(λ−1/2·). If
for almost all η⃗ ∈ Rn, there exists a function J∗

λ(η⃗), analytic in λ on C+ such
that J∗

λ(η⃗) = Jλ(η⃗) for all λ > 0, then J∗
λ(·) is defined to be the conditional

analytic function space integral of F given X with parameter λ and for λ ∈ C+

we write
Eanλ(F |X)(η⃗) = J∗

λ(η⃗).

If for fixed real q ̸= 0, the limit

lim
λ→−iq

Eanλ(F |X)(η⃗)

exists for almost every η⃗ ∈ Rn, where λ → −iq through C+, we denote the
value of this limit by Eanfq (F |X)(η⃗) and we call it the conditional generalized
analytic Feynman integral of F given X with parameter q.

Next we define [·] : Rn → C ′
a,b[0, T ] by [η⃗] =

∑n
j=1 ηjgj for η⃗ = (η1, . . . , ηn) ∈

Rn and we write

[x] ≡ [X(x)] =
n∑

j=1

(gj , x)
∼gj

for x ∈ Ca,b[0, T ].
We quote the following theorem from [10] which plays an important role in

this paper.

Theorem 4.3. Let X be given by the equation (4.2) and let F be a µ-integrable
functional on Ca,b[0, T ]. Then

(4.3) E(F |X)(η⃗) = Ex[F (x− [x] + [η⃗])].

In view of Theorem 4.3, we can define the CGFFT of functionals on function
space Ca,b[0, T ].

Definition 4.4. For λ ∈ C+ and y ∈ Ca,b[0, T ], let Tλ(F |X)(y, η⃗) denote
the conditional analytic function space integral of F (y + ·) given X(·) with
parameter λ; that is to say

Tλ(F |X)(y, η⃗) = Eanλ(F (y + ·)|X)(η⃗)

= Eanλ
x [F (y + x− [x] + [η⃗])].

(4.4)
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Then for p ∈ [1, 2] we define the CGFFT of F given X by the formula (λ ∈ C+),

(4.5) T (p)
q (F |X)(y, η⃗) =

l. i.m.
λ→−iq

Tλ(F |X)(y, η⃗), 1 < p ≤ 2

lim
λ→−iq

Tλ(F |X)(y, η⃗), p = 1

if it exists. In the left hand side of (4.5), the notation l. i.m.λ→−iq means that
for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F |X)(ρy, η⃗)− T (p)
q (F |X)(ρy, η⃗)

∣∣p′

dµ(y) = 0,

where 1/p+ 1/p′ = 1. Note that in the case p = 1,

T (1)
q (F |X)(y, η⃗) = Eanfq (F (y + ·)|X)(η⃗)

= Eanfq
x [F (y + x− [x] + [η⃗])].

(4.6)

5. Conditional transforms of functionals in F(Ca,b[0, T ])

In this section we establish the existence of the CGFFT of functionals in
F(Ca,b[0, T ]). We then use the result for the CGFFT to obtain an expression
of the GFFT of functionals in F(Ca,b[0, T ]). We also establish a translation
theorem for the CGFFT of functionals in F(Ca,b[0, T ]).

Let {g1, . . . , gn} be an orthonormal set in C ′
a,b[0, T ]. For each w ∈ C ′

a,b[0, T ],
let

p(w) = w − [w].

Then the PWZ stochastic integral (p(w), x)∼ is a Gaussian random variable
with mean

(5.1) A(p(w)) = (w − [w], a)C′
a,b

= (w, a)C′
a,b

−
n∑

j=1

(gj , w)C′
a,b

(gj , a)C′
a,b

and variance

(5.2) B(p(w)) ≡ ∥w − [w]∥2C′
a,b

= ∥w∥2C′
a,b

−
n∑

j=1

(gj , w)
2
C′

a,b
.

The following lemma is useful in establishing our main theorem for the
CGFFT of functionals F in F(Ca,b[0, T ]). The proof follows from (4.3), (5.1),
(5.2) and the change of variable formula.

Lemma 5.1. Let X be given by the equation (4.2) above. For w ∈ C ′
a,b[0, T ],

let G : Ca,b[0, T ] → C be defined by G(x) = exp{i(w, x)∼}. Then for ρ > 0 and
η⃗ ∈ Rn,

(5.3) E(G(ρ ·)|X(ρ ·))(η⃗) = exp

{
i(w, [η⃗])C′

a,b
− ρ2

2
B(p(w)) + iρA(p(w))

}
,

where A(p(w)) and B(p(w)) are given by the equations (5.1) and (5.2).
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For a positive real number q0 and w ∈ C ′
a,b[0, T ], let

(5.4) kn(q0;w) = exp
{
(1 + n)(2q0)

−1/2∥w∥C′
a,b

∥a∥C′
a,b

}
and for λ ∈ C̃+ let

(5.5) Ψ(λ; p(w)) = exp

{
− 1

2λ
B(p(w)) + iλ−1/2A(p(w))

}
.

Let Γq0 be given by (3.2). Then for all λ ∈ Γq0 ,

|Ψ(λ; p(w))|

≤ exp
{∣∣∣Im(λ−1/2

)∣∣∣ |A(p(w))|}
< exp

(2q0)
−1/2

∥w∥C′
a,b

∥a∥C′
a,b

+
n∑

j=1

∥w∥C′
a,b

∥gj∥2C′
a,b

∥a∥C′
a,b


= kn(q0;w).

To obtain our results for the CGFFT, for positive real number q0, we define
a subclass Fq0

n of F(Ca,b[0, T ]) by

Fq0
n =

{
F ∈ F(Ca,b[0, T ]) :

∫
C′

a,b[0,T ]

kn(q0;w)d|f |(w) <∞
}
,

where f and F are related by the equation (3.1).

Remark 5.2. (i) Fq0
n is a subclass of Fq0 for each positive real number q0 and

every n ∈ N.
(ii) When a(t) ≡ 0 and b(t) = t on [0, T ], A(p(w)) = 0 for all w ∈

C ′
a,b[0, T ] = C ′

0[0, T ]. Hence for all λ ∈ C̃+, |Ψ(λ; p(w))| ≤ 1 and for any

positive real number q0, Fq0
n = F(C0[0, T ]).

In next theorem, we establish the existence of the CGFFT of functionals in
F(Ca,b[0, T ]).

Theorem 5.3. Let X be given by the equation (4.2) above and let q0 be a
positive real number. Let F ∈ Fq0

n be given by the equation (3.1). Then for all

p ∈ [1, 2] and all real q with |q| > q0, the CGFFT of F , T
(p)
q (F |X) exists and

is given by the formula

T (p)
q (F |X)(y, η⃗)

=

∫
C′

a,b[0,T ]

exp
{
i(w, y)∼ + i(w, [η⃗])C′

a,b

}
Ψ(−iq; p(w))df(w)(5.6)

for s-a.e. y ∈ Ca,b[0, T ], where Ψ is given by the equation (5.5).
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Proof. Using (3.1), (4.4), the Fubini theorem, (5.3) and (5.5), we obtain that
for λ > 0 and η⃗ ∈ Rn,

E
(
F
(
y + λ−1/2 ·

) ∣∣∣X (λ−1/2 ·
))

(η⃗)

= E

(∫
C′

a,b[0,T ]

exp
{
i
(
w, y + λ−1/2·

)∼}
df(w)

∣∣∣∣X (λ−1/2 ·
))

(η⃗)

=

∫
C′

a,b[0,T ]

exp{i(w, y)∼}E
(
exp

{
i
(
w, λ−1/2·

)∼} ∣∣∣X (λ−1/2 ·
))

(η⃗)df(w)

=

∫
C′

a,b[0,T ]

exp
{
i(w, y)∼ + i(w, [η⃗])C′

a,b

}
Ψ(λ; p(w))df(w).

From this and Definition 4.4, and by a careful examination, we can see that:

(i) Tλ(F |X)(y, η⃗) = E(F (y + λ−1/2 ·)|X(λ−1/2 ·))(η⃗) is an analytic func-
tion of λ throughout the domain Int(Γq0), where Γq0 is given by (3.2);

(ii) T
(1)
q (F |X)(y, η⃗)=limλ→−iq Tλ(F |X)(y, η⃗) exists for s-a.e. y∈Ca,b[0, T ]

and η⃗ ∈ Rn, and is given by the equation (5.6) above; and

(iii) for p ∈ (1, 2], T
(p)
q (F |X)(y, η⃗) = l.i.m.λ→−iqTλ(F |X)(y, η⃗) exists for

s-a.e. y ∈ Ca,b[0, T ] and η⃗ ∈ Rn, and is given by the equation (5.6)
above.

In evaluations of limλ→−iq Tλ(F |X)(y, η⃗) and l.i.m.λ→−iqTλ(F |X)(y, η⃗), the

dominating functions are given by kn(q0;w) and (2
∫
C′

a,b[0,T ]
kn(q0;w)d|f |(w))p

′
,

respectively. □

The following corollary follows from (5.6) with p = 1 and (4.6).

Corollary 5.4. Let X, q0 and F be as in Theorem 5.3. Then for all real q
with |q| > q0, the conditional generalized Feynman integral of F , Eanfq (F |X)
exists and is given by the formula

Eanfq (F |X)(η⃗) = T (1)
q (F |X)(0, η⃗)

=

∫
C′

a,b[0,T ]

exp
{
i(w, [η⃗])C′

a,b

}
Ψ(−iq; p(w))df(w),

where Ψ is given by the equation (5.5).

In our next theorem, by using the techniques of similar to those used in [14],

we show that if we multiply T
(p)
q (F |X)(y, η⃗) by

(5.7) ϖ(−iq; η⃗) ≡
(
−iq
2π

)n
2

exp

 iq2
n∑

j=1

[
ηj − (−iq)−1/2(gj , a)C′

a,b

]2 ,

the analytic extension of the Radon-Nykodym derivative evaluated at λ = −iq,
and then integrate over Rn we obtain the GFFT T

(p)
q (F )(y). However, to do
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so we also need the following summation procedure as in [15, p. 340]. Let

(5.8)

∫
Rn

f(η⃗)dη⃗ = lim
M→∞

∫
Rn

f(η⃗) exp

−

 n∑
j=1

η2j

/2M
 dη⃗

whenever the expression on the right-hand side exists. But if f ∈ L1(Rn), it is
clear by the dominated convergence theorem that∫

Rn

f(η⃗)dη⃗ =

∫
Rn

f(η⃗)dη⃗.

To establish the equation (5.10) below, the following well-known integration
formula is useful:

(5.9)

∫
R
exp{−αu2 + βu}du =

√
π

α
exp

{
β2

4α

}
for complex numbers α and β with Re(α) > 0.

Theorem 5.5. Let X, q0 and F be as in Theorem 5.3. Then for all p ∈ [1, 2]
and all real q with |q| > q0,

(5.10) T (p)
q (F )(y) =

∫
Rn

T (p)
q (F |X)(y, η⃗)ϖ(−iq; η⃗)dη⃗

for s-a.e. y ∈ Ca,b[0, T ], where ϖ is given by (5.7).

Proof. Since Fq0
n ⊂ Fq0 , the GFFT T

(p)
q (F ) and the CGFFT T

(p)
q (F |X) of F

exist for all p ∈ [1, 2] by Theorems 3.3 and 5.3, respectively. Thus we need only
to verify the equality in equation (5.10).

Let q be a nonzero real number with |q| > q0. By using (5.6), (5.8), the
Fubini theorem, (5.9) and a simple calculation, we obtain that∫

Rn

T (p)
q (F |X)(y, η⃗)ϖ(−iq; η⃗)dη⃗

= lim
M→∞

∫
Rn

T (p)
q (F |X)(y, η⃗)ϖ(−iq; η⃗) exp

−
n∑

j=1

η2j
2M

 dη⃗

= lim
M→∞

∫
C′

a,b[0,T ]

exp{i(w, y)∼}Ψ(−iq; p(w))∫
Rn

ϖ(−iq; η⃗)× exp

{
−

n∑
j=1

η2j
2M

+ i
n∑

j=1

(gj , w)C′
a,b
ηj

}
dηj

 df(w)
= lim

M→∞

∫
C′

a,b[0,T ]

(
−iq
2π

2πM

1− iqM

)n
2

exp{i(w, y)∼}Ψ(−iq; p(w))

(5.11)



284 SEUNG JUN CHANG

× exp

{
−

n∑
j=1

(gj , a)
2
C′

a,b

2
− M

2(1− iqM)

×
n∑

j=1

[
(gj , w)

2
C′

a,b
− 2q(−iq)−1/2(gj , w)C′

a,b
(gj , a)C′

a,b
+ iq(gj , a)

2
C′

a,b

]}
df(w).

But a long and tedious calculation shows that for a sufficiently large M > 0,∣∣∣∣∣ exp{i(w, y)∼}Ψ(−iq; p(w)) exp

{
−

n∑
j=1

(gj , a)
2
C′

a,b

2
− M

2(1− iqM)

×
n∑

j=1

[
(gj , w)

2
C′

a,b
− 2q(−iq)−1/2(gj , w)C′

a,b
(gj , a)C′

a,b
+ iq(gj , a)

2
C′

a,b

]}∣∣∣∣∣
is dominated by kn(q0;w).

Using (5.11), the dominated convergence theorem, (5.5), (5.1), (5.2), (3.3)
and (3.4), we have the equation (5.10). □

The following corollary follows from (5.10) with p = 1 and (4.6).

Corollary 5.6. Let X, q0 and F be as in Theorem 5.3. Then for all real q
with |q| > q0,

Eanfq [F ] = T (1)
q (F )(0) =

∫
Rn

Eanfq (F |X)(η⃗)ϖ(−iq; η⃗)dη⃗,

where ϖ is given by the equation (5.7).

Remark 5.7. (i) Let x0 ∈ C ′
a,b[0, T ] and for each nonzero real number q, let

δ−qx0 ∈ M(C ′
a,b[0, T ]) be the Dirac measure concentrated at −qx0. Then the

functionalH−qx0
(x) = exp{−iq(x0, x)∼} is an element of F(Ca,b[0, T ]), because

H−qx0(x) =

∫
C′

a,b[0,T ]

exp{i(w, x)∼}dδ−qx0(w).

Clearly, H−qx0 ∈ Fr
n for all positive real number r.

For each F ∈ F(Ca,b[0, T ]), let

(5.12) F ∗(x) = F (x) exp{−iq(x0, x)∼}.
Since F(Ca,b[0, T ]) is a Banach algebra, F ∗ is an element of F(Ca,b[0, T ]).

(ii) Using the equation (3.1), we can write F ∗(x) as follows:

F ∗(x) =

∫
C′

a,b[0,T ]

exp{i(w − qx0, x)
∼}df(w)

=

∫
C′

a,b[0,T ]

exp{i(h, x)∼}df∗qx0
(h),

(5.13)

where f∗qx0
is a measure in M(C ′

a,b[0, T ]) such that f∗qx0
(E) ≡ f(E + qx0) for

E ∈ B(C ′
a,b[0, T ]).
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Let F ∈ Fq0
n be given by the equation (3.1) and let F ∗ be given by the

equation (5.12) with |q| > q0. Then∫
C′

a,b[0,T ]

kn(q0;h)d|f∗qx0
|(h)

=

∫
C′

a,b[0,T ]

kn(q0;w − qx0)d|f |(w)

≤
∫
C′

a,b[0,T ]

exp

{
(n+ 1)√

2q0

(
∥w∥C′

a,b
+ |q|∥x0∥C′

a,b

)
∥a∥C′

a,b

}
d|f |(w)

=
(
kn(q0;x0)

)|q| ∫
C′

a,b[0,T ]

kn(q0;w)d|f |(w)

< +∞.

Thus we see that F ∈ Fq0
n implies F ∗ ∈ Fq0

n .

For notational convenience, we will write

η⃗ + (g⃗, x0)C′
a,b

= (η1 + (g1, x0)C′
a,b
, . . . , ηn + (gn, x0)C′

a,b
)

for η⃗ ∈ Rn, x0 ∈ C ′
a,b[0, T ] and {g1, . . . , gn} ⊂ C ′

a,b[0, T ].
In Theorem 5.8, we obtain a translation theorem for CGFFT of functionals

in F(Ca,b[0, T ]).

Theorem 5.8. Let X, q0 and F be as in Theorem 5.3. Let x0 ∈ C ′
a,b[0, T ].

Then for all real q with |q| > q0,

T (p)
q (F |X)(y + x0, η⃗)

= exp

{
iq(x0, y)

∼ + iq
(
x0, [η⃗] + [x0]

)
C′

a,b

+
iq

2
B(p(x0)) + iq(−iq)−1/2A(p(x0))

}
× T (p)

q (F ∗|X)
(
y, η⃗ + (g⃗, x0)C′

a,b

)

(5.14)

for s-a.e. y ∈ Ca,b[0, T ], where F
∗ is given by the equation (5.12).

Proof. From (ii) of Remark 5.7 we know that F ∗ ∈ Fq0
n and so T

(p)
q (F ∗|X)

exists for all p ∈ [1, 2] by Theorem 5.3. Thus we need only to verify the
equality in equation (5.14).

We first note that for all w ∈ C ′
a,b[0, T ] and all q ∈ R with |q| > q0,

(5.15) (w, x0)
∼ =

∫ T

0

Dtwdx0(t) =

∫ T

0

DtwDtx0db(t) = (w, x0)C′
a,b
,

(5.16)
[
η⃗ + (g⃗, x0)C′

a,b

]
= [η⃗] + [x0],

(5.17) A(p(w − qx0)) = A(p(w))− qA(p(x0)),
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and

B(p(w − qx0))

= B(p(w)) + q2B(p(x0))− 2q(w, x0)C′
a,b

+ 2q
(
w, [x0]

)
C′

a,b

.
(5.18)

Next using (5.6) with F and η⃗ replaced with F ∗ and η⃗ + (g⃗, x0)C′
a,b

respec-

tively, (5.16), (5.5) with λ and w replaced with −iq and h = w − qx0 respec-
tively, (5.17), (5.18), (5.15) and (5.6), we have that for s-a.e. y ∈ Ca,b[0, T ] and
η⃗ ∈ Rn,

T (p)
q (F ∗|X)(y, η⃗ + (g⃗, x0)C′

a,b
)

=

∫
C′

a,b[0,T ]

exp
{
i(h, y)∼ + i

(
h, [η⃗] + [x0]

)
C′

a,b

}
Ψ(−iq; p(h))df∗qx0

(h)

=

∫
C′

a,b[0,T ]

exp
{
i(w, y)∼ − iq(x0, y)

∼ + i
(
w, [η⃗]

)
C′

a,b

+ i
(
w, [x0]

)
C′

a,b

− iq
(
x0, [η⃗] + [x0]

)
C′

a,b

}
× exp

{
i(−iq)−1/2

(
A(p(w))− qA(p(x0))

)
− i

2q

(
B(p(w)) + q2B(p(x0))− 2q(w, x0)C′

a,b
+ 2q

(
w, [x0]

)
Ca,b

)}
df(w)

= exp

{
− iq(x0, y)

∼ − iq
(
x0, [η⃗] + [x0]

)
C′

a,b

− iq

2
B(p(x0))− iq(−iq)−1/2A(p(x0))

}
×
∫
C′

a,b[0,T ]

exp
{
i(w, y + x0)

∼ + i
(
w, [η]

)
C′

a,b

}
Ψ(−iq; p(w))df(w)

= exp

{
− iq(x0, y)

∼ − iq
(
x0, [η⃗] + [x0]

)
C′

a,b

− iq

2
B(p(x0))− iq(−iq)−1/2A(p(x0))

}
× T (p)

q (F |X)(y + x0, η⃗).

(5.19)

Equation (5.14) follows from the equation (5.19). □

Corollary 5.9. Let X, q0 and F be as in Theorem 5.3. Let x0 ∈ C ′
a,b[0, T ].

Then for all real q with |q| > q0,

Eanfq (F |X)(y + x0, η⃗)

= exp

{
iq (x0, [η⃗] + [x0])C′

a,b
+
iq

2
B(p(x0)) + iq(−iq)−1/2A(p(x0))

}
× Eanfq (F ∗|X)

(
η⃗ + (g⃗, x0)C′

a,b

)
for s-a.e. y ∈ Ca,b[0, T ], where F

∗ is given by the equation (5.12).
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6. Examples

In this section we present several important functionals to apply our results
in previous sections.

Let S : C ′
a,b[0, T ] → C ′

a,b[0, T ] be the linear operator defined by

Sw(t) =

∫ t

0

w(s)db(s).

Then the adjoint operator S∗ of S is given by

S∗w(t) =

∫ t

0

(
w(T )− w(s)

)
db(s).

Using an integration by parts formula, we see that

(S∗b, x)∼ =

∫ T

0

x(t)db(t).

Example 6.1. The functional

(6.1) F1(x) = exp

{
i

∫ T

0

x(t)db(s)

}
is a functional under our consideration because

F1(x) = exp{i(S∗b, x)∼} =

∫
C′

a,b[0,T ]

exp{i(w, x)∼}dδ1(w),

where δ1 is the Dirac measure concentrated at S∗b in C ′
a,b[0, T ]. Obviously, F1

is an element of Fq0
n for all q0 > 0.

Example 6.2. Let M(R) be the class of complex-valued countably additive
measures on B(R), the Borel class of R. For ν ∈ M(R), the Fourier transform
ν̂ of ν is a complex-valued function defined on R by the formula

ν̂(u) =

∫
R
exp{iuv}dν(v).

Given m and σ2 in R with σ2 > 0, let νm,σ2 be the Gaussian measure given
by

νm,σ2(B) = (2πσ2)−1/2

∫
B

exp

{
− (v −m)2

2σ2

}
dv, B ∈ B(R).

Then νm,σ2 ∈ M(R) and

ν̂m,σ2(u) =

∫
R
exp{iuv}dνm,σ2(v) = exp

{
− 1

2
σ2u2 + imu

}
.

Let h ∈ C ′
a,b[0, T ] and let ν ∈ M(R). Define F2 : Ca,b[0, T ] → C by

F2(x) = ν̂m,σ2((h, x)∼)

= exp

{
− 1

2
σ2
[
(h, x)∼

]2
+ im(h, x)∼

}
.

(6.2)
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Define a function ϕ : R → C ′
a,b[0, T ] by ϕ(v) = vh and let f2 = νm,σ2 ◦ ϕ−1. It

is quite clear that f2 is in M(C ′
a,b[0, T ]) and is supported by [h], the subspace

of C ′
a,b[0, T ] spanned by {h}. Now for s-a.e. x ∈ Ca,b[0, T ],∫

C′
a,b[0,T ]

exp{i(w, x)∼}df2(w)

=

∫
C′

a,b[0,T ]

exp{i(w, x)∼}d(νm,σ2 ◦ ϕ−1)(w)

=

∫
R
exp{i(ϕ(v), x)∼}dνm,σ2(v)

=

∫
R
exp{i(h, x)∼v}dνm,σ2(v)

= F2(x).

Thus F2 is an element of F(Ca,b[0, T ]). Moreover F ∈ Fq0
n for all q0 > 0,

because ∫
C′

a,b[0,T ]

kn(q0;w)d|f2|(w)

=

∫
C′

a,b[0,T ]

kn(q0;w)df2(w)

=

∫
R
exp

{
(n+ 1)(2q0)

−1/2∥vh∥C′
a,b

∥a∥C′
a,b

}
dνm,σ2(v)

=

∫
R
exp

{
− (v −m)2

2σ2
+ (n+ 1)(2q0)

−1/2∥h∥C′
a,b

∥a∥C′
a,b

|v|
}
dv

< +∞.

Thus we can apply the results in previous sections to the functional F2.
In particular, if we choose h = S∗b, m = 0 and σ2 = 2 in the last expression

of (6.2), then we have

(6.3) F3(x) = exp

−

(∫ T

0

x(t)db(t)

)2
 .

The functionals given by (6.1) and (6.3) are interpreted as the potential
energy in quantum mechanics.
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