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CONDITIONAL GENERALIZED FOURIER-FEYNMAN
TRANSFORM OF FUNCTIONALS IN
A FRESNEL TYPE CLASS

SEUNG JUN CHANG

ABSTRACT. In this paper we define the concept of a conditional general-
ized Fourier-Feynman transform on very general function space Cy [0, T7.
We then establish the existence of the conditional generalized Fourier-
Feynman transform for functionals in a Fresnel type class. We also obtain
several results involving the conditional transform. Finally we present
functionals to apply our results. The functionals arise naturally in Feyn-
man integration theories and quantum mechanics.

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space, that is the space of real-
valued continuous functions z(¢) on [0, 7] with 2(0) = 0. In [21], Yeh introduced
the concept of a conditional Wiener integral and derived a Fourier inversion for-
mula for changing conditional expectations into nonconditional expectations.
In [17], Park and Skoug obtained a very simple formula for expressing condi-
tional Wiener integrals in terms of ordinary Wiener integrals. The authors,
in [21] and [17], derived the Kac-Feynman integral equation for time indepen-
dent potential functions using their own result, respectively. In [2], Chang and
Chung studied the conditional function space integrals and related topics on
a very general function space Cy (0,7 using the vector-valued conditioning
function

(1.1) X(z) = (@(t),...,2(tn)), 0=ty <ty <--<ty=T.

In [10], Chang, Choi and Skoug established a very simple formula for expressing
conditional function space integrals in terms of nonconditional function space
integrals using a very general conditioning function X (z) on C,[0,7] that
need not depend upon the values of X at only finitely many points of (0, 7]
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like in the equation (1.1) above; see the equation (4.2) below. The function
space Cy[0,T] induced by generalized Brownian motion was introduced by
J. Yeh in [19] and was used extensively by Chang and Chung [2], Chang and
Skoug [4], Chang, Choi and Skoug [7-9] and Chang, Chung and Skoug [11].

In [14], Chung and Skoug introduced the concept of a conditional Feyn-
man integral and applied their results to obtain a fundamental solution of
Schrodinger equation, whereas in [18], Park and Skoug introduced the con-
cept of a conditional Fourier-Feynman transform on Wiener space. Other
work involving conditional Feynman integrals and conditional Fourier-Feynman
transforms on Wiener space include [3, 13]. In [8], Chang, Choi and Sk-
oug established various integration by parts formulas for conditional gener-
alized Feynman integrals and conditional generalized Fourier-Feynman trans-
forms(CGFFT) using the conditioning function X (x) = z(T), x € C, [0, 7).

In this paper, working in the setting of general function space C, [0, 7]
and using the conditioning function X given by the equation (4.2) below, we
introduce a concept of a CGFFT and obtain several results for the CGFFT of
functionals in a Fresnel type class.

The Wiener process used in [3, 13, 14, 17, 18, 21] is stationary in time and is
free of drift while the stochastic process used in [2, 4, 7-10, 11, 19] and in this
paper is nonstationary in time and is subject to a drift a(¢). However when
a(t) =0 and b(t) =t on [0,T], Cy [0, T] reduces to Wiener space Cy|[0, 7.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [4, 7, 9] that
we need to establish our results in next sections.

Let (Cu[0,T],B(Cap[0,T]), ) denote the function space induced by the
generalized Brownian motion Y determined by continuous functions a(t) and
b(t) where B(C,[0,T]) is the Borel o-algebra induced by the sup-norm, see
[19, 20]. We assume in this paper that a(t) is an absolutely continuous real-
valued function on [0, 7] with a(0) = 0, a/(¢) € L?[0,T], and b(¢t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b'(t) > 0 for each t € [0,7]. Then we can consider the coordinate process
Z :[0,T] x Cyp[0,T] — R given by Z(t,z) = x(t) which is a continuous version
of Y [20]. The generalized Brownian motion Z is a Gaussian process with mean
function a(t) and covariance function r(s,t) = min{b(s), b(¢)}.

A subset B of Cy[0,T] is said to be scale-invariant measurable provided
pB is B(Cy [0, T])-measurable for all p > 0, and a scale-invariant measurable
set IV is said to be a scale-invariant null set provided p(pN) =0 for all p > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.). If two functionals F' and G defined on
Cy.b[0,T] are equal s-a.e., then we write F' =~ G.

Let L2 ,[0,T] be the space of functions on [0, 7] which are Lebesgue mea-
surable and square integrable with respect to the Lebesgue-Stieltjes measures
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on [0, 7] induced by a(t) and b(t): i.e.,

L2,[0,T] = {v : /OT v?(s)db(s) < oo and /0

where a|(t) is the total variation function of a(t). Then L? [0, T] is a separable
Hilbert space with inner product defined by

T
(u, V) = / u(t)o(B)db(t) + |al(t)]

In particular, note that |lul/,, = 0 if and only if u(¢) = 0 for my-a.e. on [0,T]
where my, is the Lebesgue measure on [0,T]. Also note that if a(t) = 0 and
b(t) = t, then Li’b[O,T] = L?[0,T]. In fact,

(Li,b[ovTL || : ”a,b) C (L%7b[O7T]7 H ' HO,b) = (LQ[OvT]v H . ||2)

since the two norms || - ||o,» and || - ||2 are equivalent.
For each v € L7 ,[0,T], the Paley-Wiener-Zygmund(PWZ) stochastic inte-
gral

T

v?(s)d|al(s) < oo} ,

wa) = tim [ S (06)ass ()

j=1

exists for p-a.e. x € C,3[0,T], where {¢;}72, is a complete orthonormal set of
real-valued functions of bounded variation on [0, 7] such that (¢;, ®x)a,b = djk
(the Kronecker delta). If v is of bounded variation on [0,7], then the PWZ

stochastic integral (v, z) equals the Riemann-Stieltjes integral fOT v(t)dxz(t) for
s-a.e. & € Cypl0,T).

Remark 2.1. For each v € L2 ,[0,T], the PWZ stochastic integral (v,z) is a
Gaussian random variable on C, [0, 7] with mean fOT v(s)da(s) and variance

Jiy v*(s)db(s). Note that for all u,v € L2 ,[0,T],

/CQ,L[O,T] (u, ) (v, x)dp(x) = /OT u(s)v(s)db(s) + /OTu(s)da(s) /OTv(s)da(s),

Hence we see that for all u,v € L7 ,[0,T], fOT u(s)v(s)db(s) = 0 if and only if
(u,z) and (v, z) are independent random variables.

Let
t

w0, T] = {w € Cupl0,T] : w(t) = / z(s)db(s) for some z € Lib[O,T]} .
0

For w € C', ,[0,T), with w(t) = [ z(s)db(s) for t € [0, T}, let Dy : C% ,[0,T] —
Lg’b[O,T] be defined by the formula

w'(t)

b(t)

(2.1) Dyw = z(t) =
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Then C;, , = C; [0, T] with inner product

T T
(wr,ws)er, = /0 Dywn Dywsdb(t) — /O 21 (8) 22 (H)db()

is a separable Hilbert space. For more details, see [9, 12].

Note that the two separable Hilbert spaces L2 [0, T] and C, ,[0, T are home-
omorphic under the linear operator given by the equation (2.1).

Throughout this paper, we assume a € C7, [0, 7] and for notational conve-
nience we will use the notation (w,z)™ instead of (D;w,x). Then we have the
following assertions.

(1) For each w € C} [0, 77, the random variable z +— (w,z)~ is Gaussian
with mean (w, a)c;wh and variance Hw||2q,1 :

(2) (w,x)™ = aw,z)™ = (qw,z)™ for any real number a, w € C.[0,7]
and z € C, [0, 7).

(3) If {w1,...,wp} is an orthonormal set in C} ,[0, 7], then the random
variables (w;, z)™’s are independent.

We denote the function space integral of a B(C, [0, T])-measurable func-
tional F' by

mmz&mmzé[”fwwm

whenever the integral exists.

Throughout this paper, let C, C; and (é+ denote the complex numbers, the
complex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part, respectively. For each A € Co, A™%/2(or A1/2) is
always chosen to have positive real part.

3. A Fresnel type class F(C, [0,T])

We first introduce a Banach algebra of functionals on Cj, 4 [0, T like a Fresnel
class of an abstract Wiener space.

Let M(Cy, ,[0,T7]) be the space of C-valued, countably additive (and hence
finite) Borel measures on Cf, ,[0,T]. M(CY, ,[0,77]) is a Banach algebra under
the total variation norm and with convolution as multiplication.

The Fresnel type class F(Cq 5[0, T]) of functionals on C, [0, T] is defined as
the space of all stochastic Fourier transforms of elements of M(CY, ;[0,77); that
is, F' € F(C,p[0,T]) if and only if there exists a measure f in M(C}, ,[0,77)
such that

(3.1) Py = [ ewpliwn))dw

for ssa.e. x € Cyp[0,T]. More precisely, since we shall identify functionals
which coincide s-a.e. on Cy [0, 7], F(C4[0,T]) can be regarded as the space
of all s-equivalence classes of functionals of the form (3.1).
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The Fresnel type class F(Cy5[0,T]) is a Banach algebra with norm

IFl=0sl= [ difiw).
C4 b[0.T]

In fact, the correspondence f — F' is injective, carries convolution into point-
wise multiplication and is a Banach algebra isomorphism where f and F' are
related by (3.1).

We adopt the definitions and notations of [4, 7] for the concept of the general-
ized Feynman integral and the generalized Fourier-Feynman transform(GFFT)
of functionals on C, [0, T7.

Remark 3.1. In [4] Chang and Skoug introduced a Banach algebra S(LZ ,[0,T7)
of functionals on C, [0, T given by

S(L2,00,T)) = {F cF(x) ~ /L

and then showed that the generalized Feynman integral and the GFFT exist
for functionals in S(L2 ,[0,T]) under appropriate conditions.

When a(t) = 0 and b(t) = t on [0,T], S(L2 [0, T]) reduces to the Banach
algebra S introduced by Cameron and Storvick [1]. For more detailed studies
of Banach algebras of functionals on classical and abstract Wiener spaces, see
[16, pp. 609-629]. Also, for a detailed study of functionals in F(C, 4[0,T]), see
[12].

exp{i(v, z)}do(v),0 € M (Li,b[O,T])}

2 ,[0,7)

For a positive real number gy and w € C;, 1[0, 77, let

klaos w) = exp { (2a0) 2 wlor,, llaller, }
and let
(3.2) Iy = {/\ e, ‘Im (/\*1/2)’ < (2q0)_1/2}.
Also, for A € C and w € C7 510,77, let

1 _
(3.3) Y(\w) = exp {—nllwllré;,h + A7 w, a)c;,b} :
Then for all A € Iy,
(s w)] < exp { [m (A2) | lwlleylalley, } < laos w).

We note that for all real ¢ with |q| > qo, (—iq)™*/? = 1/+/2]q| +isign(q)//2]q|
and —iqg € T',.
For a positive real number gy, we define a subclass F% of F(C,[0,T]) by

Fao — {F € F(Cup[0,T]) : /C k(qo; w)d| f|(w) < OO} ,

1 ,10.7]

where f and F are related by the equation (3.1).
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Remark 3.2. Note that in case a(t) = 0 and b(¢) = ¢ on [0, T, the function space
Co [0, T] reduces to the classical Wiener space Cy[0, 7] and (w, CL)C:1 , =0 for
all w € C,, ,[0,T] = C§[0,T). Hence for all A\ € Cy, |1h(A;w)| < 1 and for any
positive real number ¢, F% = F(Cy[0,T)).

We now state a theorem for the GFFT of functionals in F(C, 5[0, T']) without
proof. One can see similar results in [4, 5, 6].

Theorem 3.3. Let gy be a positive real number. Let F' € F% be given by
the equation (3.1). Then for all p € [1,2] and all real ¢ with |q| > qo, the L,

analytic GFFT of F, Tép) (F) exists and is given by the formula

BH TP EW= [ el )
105

for s-a.e. y € Cyup[0,T], where ¢ is given by (3.3). Furthermore, Tq(p)(F)

belongs to F(Cqp[0,T]).

Corollary 3.4. Let qy and F be as in Theorem 3.3. Then for all real q with
lq| > qo, the generalized analytic Feynman integral of F, E*[F| exists and is
given by the formula

WWWZHWR@:/ b (—iq w)df (w).

oy, ,[0.7T]

4. Conditional generalized Fourier-Feynman transform

In this section for F' : Cy[0,7] — C and X : Cy[0,7] — R”, we first
define the conditional function space integral of F' given X which we denote by
E(F|X). Then, using the conditioning function X given by the equation (4.2)
below, we define the conditional generalized Feynman integral E**«(F|X) and
the CGFFT T." (F|X).

Let X : Cyup[0,T] — R™ be a B(C,[0,T])-measurable functional whose
probability distribution py is absolutely continuous with respect to Lebesgue
measure on R™. Let F' be a C-valued p-integrable functional on C, [0, T].
Then, the conditional function space integral of F' given X, denoted by E(F|X)
(77), is a Lebesgue measurable function of 7, unique up to null sets in R",
satisfying the equation

(41) [y F@M@) = [ BEX) G

for all Borel sets B in R™.

Let {g1,...,9n} be any orthonormal set in Cj ,[0,7]. We note that the
corresponding PWZ stochastic integrals (g;,z)~, 7 = 1,...,n, form a set of
independent Gaussian random variables on C, [0, T]. Let X : Cy 4[0,T] — R™
be the Gaussian random vector defined by

(4.2) X(@) = ((g1,2)7, -+ (gn, 2)7)-
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Remark 4.1. We note that the conditioning function X given by the equation
(1.1) is the special case of X given by the equation (4.2) with

g;(1) = [b(t;) — b(t;_1)] 2 / Xity—1.4,)(8)db(s)
0
forj=1,...,n.

Definition 4.2. Let X : C,[0,7] — R™ be given by the equation (4.2) and
let F': Cy3[0,7] — C be a scale-invariant measurable functional such that the
function space integral E[F(A~1/2.)] exists as a finite number for all A > 0. For
A >0 let
IAT) = BIEOT2)[X(A2)) (i)
denote the conditional function space integral of F(A~1/2.) given X (A\~1/2.). If
for almost all 7 € R™, there exists a function J5(7), analytic in A on C4 such
that JX(77) = Ja(7)) for all A > 0, then J}(-) is defined to be the conditional
analytic function space integral of F' given X with parameter A and for A € C.
we write
EX (X)) = JX (1)
If for fixed real g # 0, the limit
lim E*(F|X)(7)
A——iq
exists for almost every 77 € R™, where A — —iq through C,, we denote the
value of this limit by E*™(F|X)(77) and we call it the conditional generalized
analytic Feynman integral of F' given X with parameter g.

Next we define [-] : R™ — C}, [0, T] by [7] = 377 mjg; for if = (m, ..., 1) €
R™ and we write

(X (x)] = (gj.7)"g;

j=1

[]

for x € C, [0, T].
We quote the following theorem from [10] which plays an important role in
this paper.

Theorem 4.3. Let X be given by the equation (4.2) and let F' be a p-integrable
functional on C,[0,T]. Then

(4.3) E(F|X)(1) = Ee[F(x =[] + [7])]-
In view of Theorem 4.3, we can define the CGFFT of functionals on function
space Cy [0, T7.

Definition 4.4. For A € C; and y € C,[0,77], let Tx(F|X)(y,7) denote
the conditional analytic function space integral of F'(y + -) given X(-) with
parameter A; that is to say

TA(F[X) (y, 1) = B (F(y + )| X)(7)

(4.4) = B2 F(y +x — [2] + [7])].
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Then for p € [1, 2] we define the CGFFT of F given X by the formula (A € C.),
Lim Th(F|X)(y,7), 1<p<2
A——iq

5 TOEX) ) = ;
(4.5) @ (FIX)0 ) Ag@iqTA(ﬂX)(yﬂ?)’ p=1

if it exists. In the left hand side of (4.5), the notation l.i. m.)_,_;, means that
for each p > 0,

Jim. | T\(F|X)(py, 1) — TP (F|X) (py, 7)|” dp(y) =0,
== JC, [0,T]

where 1/p+ 1/p’ = 1. Note that in the case p =1,
T3V (F|X) (g, 77) = B (F(y + )| X)(7)

(4.6) .
= EZ™F(y + o — [a] + [1])].

5. Conditional transforms of functionals in F(Cjq [0, T])

In this section we establish the existence of the CGFFT of functionals in
F(Cyap[0,T]). We then use the result for the CGFFT to obtain an expression
of the GFFT of functionals in F(C,[0,7]). We also establish a translation
theorem for the CGFFT of functionals in F(C, 4[0,T]).

Let {g1,...,9n} be an orthonormal set in C7, [0, T']. For each w € C, [0, T7,
let

p(w) = w — [w].
Then the PWZ stochastic integral (p(w),z)™ is a Gaussian random variable
with mean

B1)  Alp(w) = (w—[w],a)e;, = (w,a)er, = > (95,w)cr, (95:a)cr,,

=1

and variance

(5.2) B(p(w)) = |w = [wllg, , = lwlE, , - Z(gww)%;,
=1

The following lemma is useful in establishing our main theorem for the
CGFFT of functionals F in F(C, [0,T]). The proof follows from (4.3), (5.1),
(5.2) and the change of variable formula.

Lemma 5.1. Let X be given by the equation (4.2) above. For w € Cy ,[0,T],
let G : Cyp[0,T] — C be defined by G(x) = exp{i(w,x)~}. Then for p >0 and
7€R,

2
53 B0 )IX ()0 = exp {iCw, ey, ~ G B(w) + ipApw) |

where A(p(w)) and B(p(w)) are given by the equations (5.1) and (5.2).
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For a positive real number ¢y and w € Czlz,b[()? T}, let
(5.4) Fulaos w) = exp { (1+ ) (200) " lwllcy,llalles,, }

and for A € C, let

55 Wupw) = exp { B + A AW b
Let T'y, be given by (3.2). Then for all A € Ty,
(0 ()|

< exp {[mm (x72)] |AGp(w))1}

n
< exp 3 (200) 2 ( wler, lalles, + 3 lwlley, losliZ, lalle:,
j=1

To obtain our results for the CGFFT, for positive real number gy, we define
a subclass F2o of F(C,5[0,T]) by

e ={rerCanTy: [ kol <oof.

(0,77

b
where f and F are related by the equation (3.1).

Remark 5.2. (i) F2 is a subclass of F% for each positive real number gy and
every n € N.

(i) When a(t) = 0 and b(t) = t on [0,T], A(p(w)) = 0 for all w €
C,10,T] = C;l0,T]. Hence for all A € Cy, [¥(A;p(w))] < 1 and for any
positive real number ¢q, F2° = F(Cy[0,T)).

In next theorem, we establish the existence of the CGFFT of functionals in

F(Capl0,TY).

Theorem 5.3. Let X be given by the equation (4.2) above and let gy be a
positive real number. Let F' € Fi° be given by the equation (3.1). Then for all

p € [1,2] and all real q with |q| > qo, the CGFFT of F, Tq(p)(F|X) exists and
is given by the formula

T3P (FIX)(y, 1)

(5.6) - - )
— /C;,b[O)T]exp{z(w,y) +'L(wv[ﬁi)cl’l7b}\I/(—’L(Lp(w))df(w)

for s-a.e. y € Cy3[0,T], where ¥ is given by the equation (5.5).
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Proof. Using (3.1), (4.4), the Fubini theorem, (5.3) and (5.5), we obtain that
for A > 0 and 77 € R",

B (P (o) (7)) @

=F </c o exp {Z (w,y + A—I/Q,)N} df(w)‘X ()\_1/2 )) (i)

!
a,

= [, o (i (0 x72) 7} x (372)) @)

_ / exp {i(w,y)™ +i(w, M)y, } OO p(w)df (w).
¢ ,0,T]

From this and Definition 4.4, and by a careful examination, we can see that:
(1) Ta(F|X)(y,7) = E(F(y + A2 )| X(A"Y2.))(77) is an analytic func-
tion of A throughout the domain Int(T'y, ), where 'y, is given by (3.2);
(ii) Tq(l) (F1X)(y, M) =lmx__;q TA(F|X)(y, ) exists for s-a.e. y€Cq[0,T]
and 77 € R™, and is given by the equation (5.6) above; and
(iii) for p € (1,2], Tq(p)(F\X)(y,ﬁ) = Lim.yo_;(Th(F|X)(y,7) exists for
s-a.e. y € Cyp[0,T] and 7 € R”, and is given by the equation (5.6)
above.
In evaluations of limy_,_;q Ta (F|X)(y, 77) and Lim.x_,_;eTx(F|X)(y, 7), the
dominating functions are given by k,, (go; w) and (2 fCQ,b[(’»T] ko (go; w)d]| f|(w))?',
respectively. O

The following corollary follows from (5.6) with p =1 and (4.6).

Corollary 5.4. Let X, qo and F be as in Theorem 5.3. Then for all real q
with |q| > qo, the conditional generalized Feynman integral of F, E*a(F|X)
exists and is given by the formula

B (FIX)(7) = T (F1X)(0,7)
[ e {iw ey, } v(-inpte)diw),
ol ,10,7)

where ¥ is given by the equation (5.5).

In our next theorem, by using the techniques of similar to those used in [14],
we show that if we multiply Tq(p)(F|X)(y, 7) by

2

o —ig\ ? iq L —1/2
61 =wtien=(57) o) 5 -0 ]
e

the analytic extension of the Radon-Nykodym derivative evaluated at A = —igq,
and then integrate over R™ we obtain the GFFT Tq(p) (F)(y). However, to do
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so we also need the following summation procedure as in [15, p. 340]. Let

R M—oo Jrn

(5.8) f@di= lim [ f@espd— | Son2| oM b i
j=1

whenever the expression on the right-hand side exists. But if f € L'(R"), it is
clear by the dominated convergence theorem that

fndif= [ f(i7)dn.
R R

To establish the equation (5.10) below, the following well-known integration
formula is useful:

(5.9) /Rexp{—aUQ + Buldu = \/ZGXP {f:}

for complex numbers « and § with Re(a) > 0.

Theorem 5.5. Let X, gy and F be as in Theorem 5.3. Then for all p € [1,2]
and all real g with |q| > qo,

(5.10) TOEN) = [ TP FLX) (g
for s-a.e. y € Cqp[0,T], where w is given by (5.7).

Proof. Since F&o C Fo, the GFFT T")(F) and the CGFFT T\P (F|X) of F
exist for all p € [1,2] by Theorems 3.3 and 5.3, respectively. Thus we need only
to verify the equality in equation (5.10).

Let ¢ be a nonzero real number with |¢| > ¢go. By using (5.6), (5.8), the
Fubini theorem, (5.9) and a simple calculation, we obtain that

/ T (F|X) (y, i (—iq: 7)di]
= [Jim [ TPFIX) (g, Me(—ig ) exp § =D 53z 0 di

M—=00 Jrn 2
R j=1

= lim exp{i(w,y)~ }¥(—ig; p(w))
(511) M — o0 C;,b[O’T]

n 2

. L~
[ i e =3 24t wiey | drw)
" j=1 j=1

—iq 2mM

3
. —ig 2mM VDo
M5 c;,b[o,T1<27r 1—iqM> Pty )
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n g_]7 M
. eXp{ 2 T 201 —igM)

Jj=1

Xy {(9j7w)%;,b —2q(—iq)~*(g;,w)er , (95, 0)cr, +z’q(gj,a)a,b} }df(w).
j=1

But a long and tedious calculation shows that for a sufficiently large M > 0,

(gjva)%;,b M
2 2(1 — igM)

eXp{i(w,y)N}‘I’(iq;p(w))eXp{ .

n

XY [(gj,w)chl)b —2q(—iq) (g5, w)er , (95, 0)cr , + iQ(gj,a)QcéJ H
j=1

is dominated by k&, (qo; w).
Using (5.11), the dominated convergence theorem, (5.5), (5.1), (5.2), (3.3)
and (3.4), we have the equation (5.10). O

The following corollary follows from (5.10) with p = 1 and (4.6).

Corollary 5.6. Let X, qo and F be as in Theorem 5.3. Then for all real q
with |q] > qo,

B F) = T(F)0) = [ B (P (~ig: i
where w is given by the equation (5.7).

Remark 5.7. (i) Let zo € C;,[0,T] and for each nonzero real number ¢, let
6—qzo € M(C, 4]0, T]) be the Dirac measure concentrated at —gzo. Then the
functional H_ g, (x) = exp{—ig(zo, )™} is an element of F(C, [0, T]), because

Hogo@) = [ exp{iw,a) }do g ).
c’ .10,T)
Clearly, H_4y, € F,, for all positive real number 7.
For each F' € F(C,[0,T1), let

(5.12) F*(x) = F(zx) exp{—iq(xo,z)™}.
Since F(C4y,5[0,T1]) is a Banach algebra, F* is an element of F(C, [0, T7).
(ii) Using the equation (3.1), we can write F*(x) as follows:

F*(z) = / exp{i(w — qxo, )" }df (w)

(5.13) el

_ / exp{i(h, &)™ Ydf oy, (h),
C;, ,[0,T1]

where f;,  is a measure in M(Cy, ,[0,T]) such that

E € B(C,,,[0,T)).

qu(E) = f(F + gxo) for
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Let F € F% be given by the equation (3.1) and let F* be given by the
equation (5.12) with |g| > ¢go. Then

/ o (go; )| £, | ()
C;, ,10,T]

_ / Fon (d0; w — qo)d] | ()
c! 10,7

<[ o { (i‘/%) (Iwles, + |q|||xo||c;,b)|allc;,b}dlf ()
0,510
< + oo.

Thus we see that F' € Fl° implies F'* € F°.
For notational convenience, we will write
T+ (G wo)cr, = (m + (91, %0)cy s -5 + (gns o)y, ,)

for 7 € R™, wg € C} ,[0,T] and {g1,...,gn} C C}, [0, T].
In Theorem 5.8, we obtain a translation theorem for CGFFT of functionals
in F(Cy[0,T7).

Theorem 5.8. Let X, qo and F be as in Theorem 5.3. Let o € Cj,,[0,T].
Then for all real q with |q| > qo,

(5.14)
T3P (F|X)(y + wo, 1)

— exp {iaCeo, 1) + i, 7]+ [rl) ., + 3 Bp(a0) + i ia) 2 Ao(an) |

X T (F*1X) (4,77 + (7, 7o)y, )
for s-a.e. y € Cy[0,T], where F* is given by the equation (5.12).

Proof. From (i) of Remark 5.7 we know that F* € F% and so T\")(F*|X)
exists for all p € [1,2] by Theorem 5.3. Thus we need only to verify the
equality in equation (5.14).

We first note that for all w € C}, [0, 7] and all ¢ € R with |g| > go,

(5.15) (w,x0)”~ /thdxo /thDtxodb() (w,xo)c;b,

(5.16) |7+ @ w0)or,, | = [ + [z,

(5.17) A(p(w — gzo)) = Alp(w)) — ¢A(p(x0)),
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and
B(p(w — gzo))

(5.18) = B(p(w)) + q2B(p(.230)) —2¢(w, xO)Cé,b + 2q(w’ [xo])cfl,b.

Next using (5.6) with F" and 77 replaced with F* and 77+ (g, z0)c , respec-
tively, (5.16), (5.5) with A\ and w replaced with —ig and h = w — gz respec-
tively, (5.17), (5.18), (5.15) and (5.6), we have that for s-a.e. y € C,[0,T] and
7€ R™,

(5.19)
T (F*X) (4, 7+ (3 20)cr )

_ / exp {i(h,y)™ + ([ + [w0]) o, | W(igs p(h))df g, ()
C., ,[0.T] “

-,
— ig (o, 7] + [wo)),  }
X exp {i(—iq)1/2 (A(p(w)) - qA(p(l"o)))

_t
2q

= oxp { — ia(an, )™ ~ ia(eo. [+ lol)g, |~ EB0lan) -~ ia(-ia)Alp(a) |

077 €xXp {Z(wvy)N - iQ(‘rmy)N + Z(U}, [m)q; b + Z(U}, [xO])C/ R
»lYs ’ a,

’
a,

(B + @Bpt0) - 2a(woley, +2a(wfan) g, ) faw)

" /q;,,,[o,n exp {i(w,y +20)~ +i(w, [1]) o, P (~igs p(w))df (w)

. ~ i o
= oxp { — iaCe,9)” = (oo, ] + o), |~ FBolan) ~ al-in) 2 Alan)
x TP (F|X)(y + wo, 7).
Equation (5.14) follows from the equation (5.19). O

Corollary 5.9. Let X, qo and I be as in Theorem 5.3. Let zg € C; ,[0,T7.
Then for all real ¢ with |q| > qo,

B (FIX) (g + 0, 7)
= exp {ia o, ] + [y, + 3 Blplan) + ia(-ia) 2 Alp(ea) |

x B (F*|X) (7 + (7,20)cy, )

for s-a.e. y € Cq[0,T], where F* is given by the equation (5.12).
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6. Examples

In this section we present several important functionals to apply our results
in previous sections.
Let S: C7, [0, T] — C;,,[0,T] be the linear operator defined by

Sw(t) = /0 w(s)db(s).

Then the adjoint operator S* of S is given by

S*w(t) = /0 (w(T) — w(s))db(s).

Using an integration by parts formula, we see that

T
(b, 2)~ = /O (1)db(t).

Example 6.1. The functional

T
(6.1) Fy(z) =exp {z/ x(t)db(s)}
0
is a functional under our consideration because

Fi(z) = exp{i(S™b,2)~} = /C/ o exp{i(w, z)~ }dd (w),

where 4, is the Dirac measure concentrated at S*b in C7, [0, T]. Obviously, F}
is an element of F% for all ¢o > 0.

Example 6.2. Let M(R) be the class of complex-valued countably additive
measures on B(R), the Borel class of R. For v € M(R), the Fourier transform
v of v is a complex-valued function defined on R by the formula

P(u) = /]R explinv}du(v).

Given m and ¢? in R with o2 > 0, let Vo2 be the Gaussian measure given

by
(v —m)?
exp{ — T d'l), B c B(R)

Vm.o2(B) = (2m0?)~1/2 /
B
Then v, 2 € M(R) and

— 1
Um0z (1) = / exp{iuv}dv,, ,2(v) = exp{ — 502u2 + imu}.
R
Let h € C} ,[0,T] and let v € M(R). Define F : Cy[0,T] — C by
Fy(x) = Vg2 ((h, 7))

(6.2) _ exp{ _ %(72 [(h,2)™]* + im(h, w)”}-



288 SEUNG JUN CHANG

Define a function ¢ : R — C7, ,[0,T] by ¢(v) = vh and let fo = vy g2 097" Tt
is quite clear that fy is in M(CY, ,[0,77) and is supported by [h], the subspace
of €y ,[0,T] spanned by {h}. Now for s-a.e. € Cq[0,T],

/ exp{i(w, &)™ ydfs (w)

c’ ,10,T]

= / exp{i(w, x)N}d(Vm,az © ¢71)(w)
! 00,7

- / exp{i(9(v), ) vy 02 (v)
R

/exp{i(hﬂx)wv}dym,o2 (U)
R
Thus F; is an element of F(Cy[0,T]). Moreover F' € Fio for all gy > 0,

because

/ Fon (g3 w)d) o ()
C, ,[0,7]
_ / Fon (03 W) o (u0)
C, ,[0,7]
- / exp {(n+ 1) (200) " Ilvhll ey, lalles, Ydvm o (0)
— e = L 1200 2 flaller fol bao
s p 952 do c. e,

< + oo.

Thus we can apply the results in previous sections to the functional F5.
In particular, if we choose h = S*b, m = 0 and ¢? = 2 in the last expression
of (6.2), then we have

(6.3) Fy() = exp —< /0 :v(t)db(t))

The functionals given by (6.1) and (6.3) are interpreted as the potential
energy in quantum mechanics.
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