• Title/Summary/Keyword: Integral Equation

Search Result 1,026, Processing Time 0.024 seconds

Integral Transforms in Electromagnetic Formulation

  • Eom, Hyo Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.273-277
    • /
    • 2014
  • In this research, integral transform technique for electromagnetic scattering formulation is reviewed. Electromagnetic boundary-value problems are presented to demonstrate how the integral transforms are utilized in electromagnetic propagation, antennas, and electromagnetic interference/compatibility. Various canonical structures of slotted conductors are used for illustration; moreover, Fourier transform, Hankel transform, Mellin transform, Kontorovich-Lebedev transform, and Weber transform are presented. Starting from each integral transform definition, the general procedures for solving Helmholtz's equation or Laplace's equation for the potentials in the unbounded region are reviewed. The boundary conditions of field continuity are incorporated into particular formulations. Salient features of each integral transform technique are discussed.

Certain Class of Multidimensional Convolution Integral Equations Involving a Generalized Polynomial Set

  • Shenan, Jamal Mohammed;Salim, Tariq Omar
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.251-260
    • /
    • 2011
  • The aim of this paper is to obtain a solution of a certain multidimensional convolution integral equation of Fredholm type whose kernel involves a generalized polynomial set. A number of results follow as special cases from the main theorem by specifying the parameters of the generalized polynomial set.

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED HOLDER SPACE

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

INTEGRAL EQUATIONS WITH CAUCHY KERNEL IN THE CONTACT PROBLEM

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.895-904
    • /
    • 2000
  • The contact problem of two elastic bodies of arbitrary shape with a general kernel form, investigated from Hertz problem, is reduced to an integral equation of the second kind with Cauchy kernel. A numerical method is adapted to determine the unknown potential function between the two surfaces under certain conditions. Many cases are derived and discussed from the work.

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED $H{\ddot{O}}LDER$ SPACE

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.23 no.2
    • /
    • pp.257-260
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

Integral equation formulation for electromagnetic coupling through an arbitrarily shaped aperture into a parallel-plate waveguide (임의 형태의 개구에 의한 평행평판 도파관으로의 전자기적 결합 문제 해석을 위한 적분 방정식 방법)

  • Lee, Young-Soon;Lee, Chang-Won;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.25-35
    • /
    • 1995
  • An analysis method of electromagnetic coupling through an arbitrarily shaped aperture on the upper wall of parallel-plate waveguide, when excited by an electromagnetic plane wave from outside, is considered. The mixed-potential integral equation, in which Green's functions are expressed in a computationally efficient closed form by using the Prony's method and the Sommerfeld identity, is formulated. Expanding the unknown equivalent magnetic surface current in terms of two-dimensional rooftop-type basis functions and choosing razor testing, the integral equation is reduced to a linear algebraic equation, which is solved. The results are compared with the previous results. Fairly good agreements between them are observed.

  • PDF

Prediction of Sound Field Inside Duct with Moving Medium by using one Dimensional Green's function (평균 유동을 고려한 1차원 그린 함수를 이용한 덕트 내부의 음장 예측 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.915-918
    • /
    • 2005
  • Acoustic holography uses Kirchhoff·Helmholtz integral equation and Green's function which satisfies Dirichlet boundary condition Applications of acoustic holography have been taken to the sound field neglecting the effect of flow. The uniform flow, however, changes sound field and the governing equation, Green's function and so on. Thus the conventional method of acoustic holography should be changed. In this research, one possibility to apply acoustic holography to the sound field with uniform flow is introduced through checking for the plane wave in a duct. Change of Green's function due to uniform flow and one method to derive modified form of Kirchhoff·Heimholtz integral is suggested for 1-dimensional sound field. Derivation results show that using Green's function satisfying Dirichlet boundary condition, we can predict sound pressure in a duct using boundary value.

  • PDF

A STATISTICS INTERPOLATION METHOD: LINEAR PREDICTION IN A STOCK PRICE PROCESS

  • Choi, U-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.657-667
    • /
    • 2001
  • We propose a statistical interpolation approximate solution for a nonlinear stochastic integral equation of a stock price process. The proposed method has the order O(h$^2$) of local error under the weaker conditions of $\mu$ and $\sigma$ than those of Milstein' scheme.

  • PDF