1 |
Srivastava H. M., Gupta K. C. and Goyal S. P., The H-Functions of One and Two Variables with Applications, South Asian Publ., New Delhi-Madras, 1982.
|
2 |
Srivastava H. M. and Monocha H. L., A Treatise on Generating Functions, Wiley/Halsted, New York, 1984.
|
3 |
Srivastava H. M. and Panda R., Certain multidimensional integral transformation I and II, Nederl. Akad. Wetensch. Indag Math., 40(1978), 118-131, 132-144.
|
4 |
Srivastava H. M. and Panda R., On the unified presentation of certain classical polynomials, Boll. Un. Mat. Ital., 12(4)(1975), 306-314.
|
5 |
Srivastava H. M. and Singhal J. P., A class of polynomials defined by generalized Rodrigues formula, Ann. Math. Pure Appl., 90(1971), 75-85.
DOI
|
6 |
Srivastava R., The inversion of an integral equation involving a general class of polynomials, J. Math. Anal. Appl., 186(1994), 11-20.
DOI
ScienceOn
|
7 |
Gould H. W. and Hopper A. T., Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J., 29(1962), 51-63.
DOI
|
8 |
Agrawal B. D. and Chaubey J. P., Operational derivation of generating relations for generalized polynomials, Indian J. Pure Appl. Math., 11(1980), 1155-1157;
|
9 |
Chatterjea S. K., Quelques fonctions generatrics des Poylnomes d'Hermite du point de vue de algebre de Lie, C. R. Acad. Sci. Paris, Ser., A-B268(1969), 600-602.
|
10 |
Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F. G., Tables of integral transforms Vol. I, McGraw-Hill, New York, 1954.
|
11 |
Krall H. L. and Frink O. A., A new class of orthogonal polynomials; Bessel polynomials, Trans. Am. Math. Soc., 65(1949), 100-115.
DOI
ScienceOn
|
12 |
Lala A.and Shrivastava P. N., Inversion of an integral involving a generalized Hermite polynomial, Indian J. Pure Appl. Math., 21(1990), 163-166.
DOI
ScienceOn
|
13 |
Lala A. and Shrivastava P. N., Inversion of an integral involving a generalized function, Bull. Calcutta Math. Soc., 82(1990), 115-118.
|
14 |
Raizad S. K., A study of unied representation of special functions of mathematical physics and their use in statistical and boundary value problems, Ph. D. thesis (Bundelkhand Univ., Jhansi, India), 1991.
|
15 |
Saigo M., Goyal S. P. and Sexena S. A., A theorem relating a generalized Weyl fractional integral, Laplace and Varma transforms with applications, J. Fract. calc., 13(1998), 43-56.
|