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I. INTRODUCTION 

Various integral transforms have been extensively used in the 

formulation of electromagnetic scattering, radiation, antennas, 

and electromagnetic interference-related problems. The integral 

transform technique [1, 2] is an indispensable tool for repre-

senting the fields in the unbounded (open) region. This 

technique is often combined with the mode-matching method 

to solve electromagnetic boundary-value problems. The purpose 

of the present paper is to review the integral transforms that are 

applied in conjunction with the mode-matching method.  

In the paper, we will limit our discussion to the canonical 

slotted conductors, which will enable us to use the technique of 

variable separation. The use of Fourier transform, Hankel tr-

ansform, Mellin transform, Kontorovich-Lebedev transform, 

and Weber transform is discussed. We will show how these 

integral transforms can be incorporated into the pertinent elec-

tromagnetic boundary-value problems, which are formulated in 

terms of Helmholtz’s equation or Laplace’s equation. Depend-

ing on the problem geometries, a certain type of integral tr-

ansforms must be chosen to facilitate the solutions to Helm-

holtz’s equation or Laplace’s equation for the potentials. From 

the integral transform definitions, we will show how the po-

tentials in the unbounded region can be obtained. In the next 

section, we begin with Fourier transform. The time convention 

exp( )i t  is used throughout the analysis. 
 

II. FOURIER TRANSFORM  

The Fourier transform pair is as follows: 
  

             

( ) ( ) i zf f z e dz






  ,                (1) 

1
( ) ( )

2
i zf z f e d 







   .              (2) 

  

The Fourier transform technique has long been used for 

electromagnetic scattering, diffraction, and antenna applications. 

We will discuss the formulation of Fourier transform by con-

sidering radiation from slotted circular waveguides. Fig. 1 shows 

a circular waveguide with a narrow circumferential slot array. 

The circular waveguide is infinitely long in the z-direction. An 

incident field is assumed to propagate within the circular wa-
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veguide ( <a ) from below. In region I ( <a ), the scattered 

electric and magnetic vector potentials in the z-direction are 

needed for the field description.  
The z-component of the scattered electric vector potential  

satisfies Helmholtz’s equation, 2 2( ) ( , , ) 0zk F z    , where 

k is the wave number in region I. Helmholtz’s equation in the 

cylindrical coordinates ( , , )z   is as follows: 
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We will represent the scattered electric vector potential 

( , , )zF z   based on the Fourier transform and Fourier series. 

Since the problem geometry is open ( )z     in the z-

direction and periodic in the  -direction with 2 -periodicity, 

we let: 
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We substitute Eq. (4) into Eq. (3) to obtain Bessel’s di-

fferential equation: 
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Since the field is finite at the origin, the Bessel function of the 

first kind, ( )nJ  , is chosen as 
1 2( , ) ( ) ( )nF F J     , whe-

re 2 2k   . Hence: 
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Fig. 1. A perfectly conducting circular waveguide of inner radius 

( a  ) with a narrow circumferential slot array. 

A complete radiation analysis using the boundary conditions  

is available in [3]. 

III. HANKEL TRANSFORM 

The Hankel transform pair is as follows: 

0

( ) ( ) ( )nf f J d    


  ,                (7) 

0
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

   .               (8) 

The Hankel transform is useful for the analysis of scattering 
from circular apertures. Consider electromagnetic scattering 
from a circular aperture in an infinitely extended, perfectly 
conducting plane, as shown in Fig. 2.  

Assume that a uniform plane wave is incident on a circular 
aperture from below. The transmitted field in region I, which is 
above the slotted conducting plane, can be written in terms of 
the z-component of the transmitted electric and magnetic 
vector potentials. The z-component of the transmitted electric 

vector potential in region I, ( , , )zF z  , satisfies Eq. (3). Since 
region I is open (  > 0) in the  -direction and periodic in the 

 -direction with 2 -periodicity, it is expedient to use the 
Hankel transform and Fourier series representations simulta-
neously as: 
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Substituting Eq. (9) into Eq. (3) yields: 
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where 2 2k   . Since the transmitted field must vanish 

when z  goes to infinity, we choose 
1 2( , ) ( ) i zF F e     . 

Hence: 
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The field representations and some computations are availa-

ble in [4]. 
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Fig. 2. A circular aperture of radius a in an infinitely extended, thick 

perfectly conducting plane. 
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Fig. 3. A slotted two-dimensional conducting wedge, where the wedge 

is symmetric with respect to 0.   

 

IV. MELLIN TRANSFORM 

The Mellin transform pair is:  

1
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Consider the two-dimensional ( ,  ) electrostatic boundary-

value problem of a slotted conducting wedge, as shown in Fig. 3. 

The electrostatic potential V  is applied across the conducting 

wedge. The electrostatic potential ( , )   in region I 
0(
 

02 )      is given by the two-dimensional Laplace equa-

tion as:  
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We will determine ( , )   in region I, assuming:  
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Substituting Eq. (15) into Eq. (14) gives: 
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Since the electric field at    exists only in the radial 

direction  , it is possible to represent the potential as 

1 2( , ) ( ) cos ( )          . Thus: 
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A complete solution to the potential problem is provided in 

[5]. 
 

V. KONTOROVICH-LEBEDEV TRANSFORM 

The Kontorovich-Lebedev transform pair is as follows:  
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where (1) ( )H k   is the Hankel function of the first kind. The 

incident wave impinges on the structure, as shown in Fig. 4. 

Assume that the scattering problem is two-dimensional ( ,  ) 

and the z-component of the scattered magnetic vector po-

tential ( , )zA   solely describes the scattered field. Helmholtz’s 

equation for ( , )zA    is: 
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We express ( , )zA    in region I (0    ) as: 
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Substituting Eq. (21) into Eq. (20) yields: 
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Hence, the solution is: 
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A complete wedge-scattering analysis using the boundary 

conditions can be found in [6]. 
 

VI. WEBER TRANSFORM 

The Weber transform pair is [7]: 
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Fig. 4. A multiply slotted, two-dimensional, perfectly conducting 

wedge.  
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Fig. 5. An infinitely long conducting cylinder of radius a piercing a 

thick conducting plane of infinite extent. 
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where ( ) ( ) ( ) ( ) ( )Z J N a N J a          . Note that 

( )J   and ( )N   are the Bessel functions of the first and 

second kinds of order  , respectively. Consider the electro-

static boundary-value problem in Fig. 5. The electrostatic po-

tential V is applied between the infinitely long conducting 

cylinder of radius a and a perforated thick conducting plane of 

infinite extent. Based on the superposition, we decompose the 

original problem of Fig. 5 into equivalent ones [8].  

We wish to determine the electrostatic potential for the 

equivalent problem. The electrostatic potential ( , )z
 
in 

region I, which is above the slotted plane and exterior to the 

cylinder ( 0, )z a     , is given by:  
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If the boundary condition for the equivalent problem 

requires ( , ) 0a z  , it is possible to let: 
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Substituting Eq. (28) into Eq. (27) gives: 
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If the boundary condition is such that the potential is zero 

when z   , we choose 1 2( , ) ( ) zz e       . Hence, the  

 

 

 

 

 

 

electrostatic potential is [7, 8]: 
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A complete potential analysis is given in [8].  
 

VII. CONCLUSION 

In this paper, the integral transform technique in electro-

magnetic boundary-value problems was shown. Fourier trans-

form, Hankel transform, Mellin transform, Kontorovich-Le-

bedev transform, and Weber transform were introduced. Star-

ting from Helmholtz’s equation or Laplace’s equation, pertinent 

potential expressions for the open regions were derived. The 

integral transform technique can be adequately applied to elec-

tromagnetic scattering and radiation problems, in particular 

when the scattering geometries have canonical cylindrical shapes. 
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