• Title/Summary/Keyword: Insulation curtain

Search Result 46, Processing Time 0.024 seconds

A Study on the Analysis of Insulation Performance according to Curtain Wall Type and Insulation Material Form (커튼월 형태 및 단열재 형상에 따른 단열성능 분석에 관한 연구)

  • You, Nam-Gyu;Hong, Sang-Hun;Kim, Hae-Na;Seo, Eun-Seok;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.165-166
    • /
    • 2019
  • Curtain wall means a non-bearing wall that forms the outer walls of a building to divide the exterior and interior space. The increased use of curtain walls is diverse, including structural safety, watertightness, and wind pressure. As the government's energy conservation policy and the aim of zero-energy houses, the importance of heat reduction is also greatly increased. So, the study of monotony is constantly being conducted. Thus, in this study, insulation performance was analyzed through simulation according to the shape of curtain wall and the shape of insulation inside, and the purpose of this study was to provide basic data on the application of insulation criteria by energy saving design of buildings.

  • PDF

A Study on the Insulation Performance of Unit Curtain Wall Profile Shape (유닛 커튼월 프로파일 형상에 따른 단열성능에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Hae-Na;Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.245-246
    • /
    • 2023
  • The unit curtain wall is an exterior finish currently used on the exterior walls of high-rise buildings. Curtain walls used as non-endurance walls are largely classified into stick curtain walls and unit curtain walls, and their use has recently been on the rise to reduce risks at construction sites through factory manufacturing. Accordingly, this study attempted to examine the insulation performance according to the shape of the unit curtain wall profile through insulation simulation.

  • PDF

Examination of insulation effect by simulation of Curtain wall insulation Warm block (커튼월 프레임 단열층의 시뮬레이션을 통한 단열효과 검토)

  • Hong, snag-hun;You, Nam-Gyu;Jung, Ui-In;Kim, Bong-Joo;Kang, Hui Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.234-235
    • /
    • 2018
  • The development of insulation,the most important factor, is slow. The curtain wall market is getting bigger as the bulidings are getting bigger, but the insulation of the window is getting a problem. In order to solve this problem, we want to develop the insulation block used in the window frames. We will examine the insulation effect by using the existing Azon insulation block and the thermal worm convex which is to be developed with Therm 7.4 program.

  • PDF

Insulation Method and Performance Evaluation for Fastening Unit of ALC Pannel-Curtain wall (ALC 패널 커튼월의 패스닝 유닛의 단열 방법과 성능 평가)

  • Kim, Bongl-Joo;Kim, Kyeong-A;Park, Je-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.107-110
    • /
    • 2011
  • In this study is to improve insulation performance that are the most weak insulation part of fastening unit of the curtain wall. It was produced that thought out to minimize mullion and connecting part, and evaluated performance that make a layer of insulation in the middle by using vibration-proof rubber or silicon. Vibration-proof rubber insulation is 2.6℃~4.0℃ higher and silicon insulation is 2.4℃ higher than non-insulation. Therefore the insulating layer of fastening unit is necessary.

  • PDF

Application of Ventilated Cavity for Enhancing Insulation and Preventing Condensation of Curtain-wall System (커튼월의 단열 향상 및 결로 방지를 위한 통기구조 적용방안 연구)

  • Lee, Sunwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Curtain-wall systems have been widely applied to buildings because of their lightweight and constructability characteristics. However, as curtain-wall systems include many building materials, vapor barriers can become damaged and condensation can occur. Due to the material properties of stone curtain-walls, the external appearance and structure of a building could be damaged and the insulating performance of the curtain-wall could be worse. Natural ventilation using an air cavity in a curtain-wall is expected to be effective for the prevention of condensation in inner walls and for the reduction of building cooling energy use in the summer. The purpose of this experimental study is to analyze the influence of a ventilated cavity on the insulating performance of a curtain-wall and the ventilated cavity depth and ratio of top opening needed to prevent condensation in a curtain-wall.

An Experimental Study on the Evaluation of Fastening Unit Insulation Developed for the Insulation of Curtain Wall

  • Kim, Bong-Joo;Kim, Kyeong-A
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.243-256
    • /
    • 2012
  • This study is the experimental study to improve the insulation of the fastening unit system, which has the most vulnerable insulation in the curtain walls. The Fastening Units were designed and fabricated to minimize the connection part of mullions. In addition, slight movements were taken into account and the performance of the middle layer was evaluated by forming an insulation layer with the vibration-proof rubber and the silicon to satisfy the mechanical and thermal performance criteria. A total of 10 experiments were performed under various conditions, such as indoor-outdoor temperature difference, type of insulation material, thickness of insulation material, and others. using the fabricated Fastening Units. As a result, the vibration-proof rubber insulation showed the temperature difference of $2.2^{\circ}C-5.0^{\circ}C$, and the silicon insulation showed the temperature difference of $2.8^{\circ}C-4.5^{\circ}C$, compared to the non-insulated Fasteniirature difference, typesng Units. When these results were compared with the psychometric chart graph, the insulated Fastening Unit designed in this study can be considered to prevent the dew condensation.

Economic Evaluation of Absorption Curtain Wall Sleeve with Relative Storey Displacement (층간변위 흡수형 커튼월 슬리브의 경제성 평가)

  • Hong, Sang-Hun;You, Nam-Gyu;Seo, Eun-Seok;Kim, Hae-Na;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.163-164
    • /
    • 2019
  • Curtain wall is constructed in various forms and designs by forming the exterior walls of a building, and refers to non-bearing walls that divide the exterior and interior spaces of a building. Curtain walls require not only wind pressure, but also waterproof, insulation, insulation, and durability, as well as the effects of recent frequent earthquakes. Studies on the sleeve used to connect the vertical member mullions in the process of high-rise curtain walls are insufficient. In this study, sleeves connecting curtain wall mullions were developed to absorb external displacement, and the purpose of this study was to evaluate economic feasibility through comparison with existing construction methods.

  • PDF

Insulation Performance Evaluation of the Curtain Wall Anchoring Unit by 3D Heat Transfer Simulation and Life Cycle Cost Analysis (3차원 전열해석 및 생애비용 분석을 통한 커튼월 앵커링 유닛의 단열성능 향상 방안 평가)

  • Kang, Seung-Hee;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.63-70
    • /
    • 2003
  • It is very important to improve the insulation performance of curtain wall anchoring unit since it is composed of materials with high thermal conductivity, such as aluminium, steel and so on. This study aims to evaluate the heating energy performance and economical efficiency of various alternatives which are different in position and material of insulation. As results, alternative of inserting the urethane washer & pad and coating the anchoring unit with urethane foam can improve the heating energy performance and L.C.C(Life Cycle Cost) by 6.33% and 0.95%, respectively, as compared with the existing case.

Analysis of Nocturnal Thermal Insulation Effect of Thermal Curtain in Plastic Greenhouse (야간(夜間)의 온실내(溫室內) 보온(保溫)커텐의 보온효과분석(保溫效果分析))

  • Cho, Yong-Baeg;Koh, Hak-Kyun;Kim, Moon-Ki;Kim, Yong-Hyeon
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 1989
  • A simulation model of plastic greenhouse was developed to evaluate the insulation effect of thermal curtain. Change in thermal environment with and without thermal curtain was verified through experiments, which agreed with the predicted values satisfactorily. About 18 to 20% of energy was saved in the plastic greenhouse by employing the P.E. film thermal curtain. Employing P.E. film thermal curtain also raised the temperature of the covering film and inner air by $1^{\circ}C$ and $1.5{\sim}1.8^{\circ}C$, respectively.

  • PDF

An Experimental Study on Fire Resistance Performance of Curtain-Wall System with Steel-Aluminum Hybrid Frame (스틸-알루미늄 복합 프레임을 갖는 커튼월의 내화성능에 관한 실험적 연구)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Cho, Bong-Ho;Kim, Heung-Yeal
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.104-111
    • /
    • 2011
  • Aluminum has been widely used as frame materials in the curtain walls. Recently, use of steel as a curtain wall frame is being considered due to its higher strength and thermal resistance than aluminum. In this study, fire tests on the basis of EN 13830 were performed with aluminum and steel-aluminum hybrid curtain walls. From the tests, fire resistance integrity, thermal insulation, and radiation properties were evaluated for both systems and compared. According to the test results, the steel-aluminum hybrid curtain wall showed better fire-performance than the typical aluminum curtain wall for the fire resistance integrity and radiation properties. Although, the fire resistance performance for the insulation property was 6 min for both the two frames, the collapses were occurred at 36 min for the steel-aluminum hybrid curtain wall and at 13 min for the aluminum hybrid curtain wall.