• Title/Summary/Keyword: Input series

Search Result 1,105, Processing Time 0.028 seconds

A study on rotational motion control for ship steering motion control

  • Park, Seong-Hwan;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.120-130
    • /
    • 2016
  • In general, a series of ship steering motions is composed of a combination of translational motions and rotational motions of the ship. In particular, a series of rotational motions frequently occurs in narrow areas such as ports and canal zones. In this paper, a method was suggested for composing an integrated control algorithm based on the jog dial as a command instrument for rotational motion control. In order to realize the rotational motions, several algorithms were suggested for generating rotational commands, for selecting motion variables, for choosing reference input values for the motion variables, for computing required accelerations and thrusts, and for allocating thrusts to actuators. A simulation program was compiled to execute simulations for three rotational motions. Finally, the effectiveness of the suggested method was verified by analyzing the simulation results.

Anti-Swing Control of Overhead Crane System using Sum of Squares Method (천정형 크레인의 흔들림 억제제어에 관한 SOS 접근법)

  • Hong, Jin-Hyun;Kim, Cheol-Joong;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.407-413
    • /
    • 2013
  • This paper proposes anti-swing control of overhead crane system using sum of squares method. The dynamic equations of overhead crane include nonlinear terms, which are transformed into polynomials by using Taylor series expansion. Therefore the dynamic equation of overhead crane can be changed to the system of polynomial equation. On the basis of polynomial dynamics of crane system, we propose the Sum of Squares (SOS) conditions considering the input constraints. In addition, control gains are obtained by numerical tool which is called by SOSTOOL. The effectiveness of the proposed method is demonstrated by numerical simulation.

Transient Analysis of Magnetodynamic Systems Using Fourier Transform and Frequency Sensitivity (푸리에 변환과 주파수 민감도를 이용한 시변자장 시스템에서의 과도상태 해석)

  • Choi, Myung-Jun;Kim, Chang-Hyun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.64-66
    • /
    • 1998
  • This paper presents a new efficient method for transient analysis in magnetodynamic systems of linear eddy current problems. This mehtod employs the Fourier transform and the high-order frequency sensitivity of harmonic finite element method. By taking into account the time-constant of magnetodynamic system, the Fourier integral of continuous frequency is converted into the Fourier series of discrete frequency. And with the results of Fourier series expansion of converted input wave form, the responses of each sinusoids is superposed to give the total response of the magnetodynamic systems. But, if the frequency band of input wave form is broad, it takes long computational time since all responses for each sinusoids must be calculated. Therefore, the high-order frequency sensitivity method is employed to estimate the response variation to frequency. The proposed algorithm is applied to an induction heating system to validate its numerical efficiency.

  • PDF

An analysis of phase-shifted parallel -input/series-output dual converter for high-power step-up applications (대용량 승압형 위상천이 병렬입력/직렬출력 듀얼 컨버터의 분석)

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.189-192
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output dual converter for high-power step-up applications has been proposed. It features a high efficiency due to the low switch turn-off voltage, low device stresses, low ripple contents, and a fast control-to-output dynamics compared to its PWM counterpart. To confirm the validity of the proposed converter, experimental results from an 800W, 350Vdc prototype are presented.

  • PDF

Forecasting of Urban Daily Water Demand by Using Backpropagation Algorithm Neural Network (역전파 알고리즘을 이용한 상수도 일일 급수량 예측)

  • Rhee, Kyoung Hoon;Moon, Byoung Seok;Oh, Chang Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 1998
  • The purpose of this study is to establish a method of estimating the daily urban water demend using Backpropagation algorithm is part of ANN(Artificial Neural Network). This method will be used for the development of the efficient management and operations of the water supply facilities. The data used were the daily urban water demend, the population and weather conditions such as treperarture, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. We adjusted the weights of ANN that are iterated the training data patterns. We normalized the non-stationary time series data [-1,+1] to fast converge, and choose the input patterns by statistical methods. We separated the training and checking patterns form input date patterns. The performance of ANN is compared with multiple-regression method. We discussed the representation ability the model building process and the applicability of ANN approach for the daily water demand. ANN provided the reasonable results for time series forecasting.

  • PDF

INTRODUCTION OF THREE FUNCTIONAL MODELS MATCHED TO THE STOCHASTIC RESPONSE EVALUATION OF ACOUSTIC ENVIRONMENTAL SYSTEM AND ITS APPLICATION TO A SOUND INSULATION SYSTEM

  • Ohta, Mitsuo;Fujita, Yoshifumi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.686-691
    • /
    • 1994
  • For evaluating the response fluctuation of the actual environmental acoustic system excited by arbitrary random inputs, it is important to predict a whole probability distribution form closely connected with evaluation indexes Lx, Leq and so on. In this paper, a new type evaluation method is proposed by introducing three functional models matched to the prediction of the response probability distribution from a problem-oriented viewpoint. Because of the positive variable of the sound intensity, the response probability density function can be reasonably expressed theoretically by a statistical Laguerre expansion series form. The relationship between input and output is described by the regression relationship between the distribution parameters(containing expansion coefficients of this expression) and the stochastic input. These regression functions are expressed in terms of the orthogonal series expansion and their parameters are determined based on the least-squares error criterion and the measure of statistical independency.

  • PDF

An Improved Wireless Power Charging System Capable of Stable Soft-Switching Operation Even in Wide Air Gaps (넓은 공극 범위에서도 안정된 소프트 스위칭 동작 가능한 개선된 무선 전력 충전 시스템)

  • Woo, Jeong-Won;Moon, Yu-Jin;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.180-191
    • /
    • 2022
  • In this paper, a single-stage alternating current (AC)-DC converter is proposed for the automated-guided vehicle wireless charging system. The proposed converter is capable of soft-switching under all input voltage (VAC: 220 Vrms ± 10%), load conditions (0-1 kW), and air gap changes (40-60 mm) by phase control at a fixed switching frequency. In addition, controlling a wide output voltage (Vo: 39~54 VDC) is possible by varying the link voltage and improving the input power factor and the total harmonic distortion factor. Experimental results were verified by making a prototype of a 1-kW wireless power charging system that operates with robustness to changes in air gaps.

Design of a controller for input time-delay nonlinear system

  • Choi, Hyung-Jo;Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.548-552
    • /
    • 2005
  • In most physical processes, the transfer function includes a time-delay, and in the general distributed control system using a computer network, an inherent time-delay exists due to the spatial separation between controllers and actuators. Under the circumstance where an input time-delay exits, the system response overshoots and tends to diverge. For this reasons described above, a controller design method is proposed for a discrete nonlinear system including input time-delay, which adopts the time-discretization using Taylor series. Controllers are synthesized using an input/output linearization method. Finally, several cases of the computer simulations were conducted, and the results validate the proposed methods.

  • PDF

Polynomial Fuzzy Modelling and Trajectory Tracking Control of Wheeled Mobile Robots with Input Constraint (입력제한을 고려한 이동로봇의 다항 퍼지모델링 및 궤적추적제어)

  • Kim, Cheol-Joong;Chwa, Dong-Kyoung;Oh, Seong-Keun;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1827-1833
    • /
    • 2009
  • This paper deals with the trajectory tracking control of wheeled mobile robots with input constraint. The proposed method converts the trajectory tracking problem to the system stability problem using the control inputs composed of feedforward and feedback terms, and then, by using Taylor series, nonlinear terms in origin system are transformed into polynomial equations. The composed system model can make it possible to obtain the control inputs using numerical tool named as SOSTOOL. From the simulation results, the mobile robot can track the reference trajectory well and can have faster convergence rate of the trajectory errors than the existing nonlinear control method. By using the proposed method, we can easily obtain the control input for nonlinear systems with input constraint.

Energy efficient joint iterative SIC-MMSE MIMO detection (에너지 효율적 반복 SIC-MMSE MIMO 검출)

  • Ngayahala, F.C. Kamaha;Ahmed, Saleem;Kim, Sooyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • In this paper, we propose a new computationally efficient joint iterative multi-input multi-output (MIMO) detection scheme using a soft interference cancellation and minimum mean squared-error (SIC-MMSE) method. The critical computational burden of the SIC-MMSE scheme lies in the multiple inverse operations of the complex matrices. We find a new way which requires only a single matrix inversion by utilizing the Taylor series expansion of the matrix, and thus the computational complexity can be reduced. The computational complexity reduction increases as the number of antennas is increased. The simulation results show that our method produces almost the same performances as the conventional SIC-MMSE with reduced computational complexity.