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ABSTRACT . .

In this paper, we propose a new computationally efficient joint iterative multi-input multi-output (MIMO) detection scheme
using a soft interference cancellation and minimum mean squared-error (SIC-MMSE) method. The critical computational
burden of the SIC-MMSE scheme lies in the multiple inverse operations of the complex matrices. We find a new way which
requires only a single matrix inversion by utilizing the Taylor series expansion of the matrix, and thus the computational
complexity can be reduced. The computational complexity reduction increases as the number of antennas is increased. The
simulation results show that our method produces almost the same performances as the conventional SIC-MMSE with

reduced computational complexity.

I. Introduction

In most of wireless systems with multiple-input
multiple output (MIMO) technique, a powerful error
correction coding scheme with an iterative decoder is
employed in order to meet the performance requirement
[1]. The low-complexity iterative detection and decoding
technique based on soft interference cancellation and
minimum mean squared-error (SIC-MMSE) detection has
received considerable attention recently due to its good
performance-complexity tradeoff for coded MIMO
systems [2]. The basic concept of the SIC-MMSE
detection is to compute estimates of the transmitted
symbols based on the a priori log-likelihood ratio (LLR)

obtained from the channel decoder. The estimates are then
utilized to calculate soft symbols and cancel the
interference in the received signal vector.

During the soft interference cancellation process, the
SIC-MMSE detector requires to perform N; times of the
matrix inversion process in complex domain, where N; is
the number of transmit antennas. A number of attempts
have been made to reduce the complexity of the
SIC-MMSE schemes [3]-[5]. In order to reduce the
complexity of matrix inversion process, singular value
decomposition (SVD) method was used in [3], while eigen
value decomposition (EVD) and Cholesky decomposition
methods were utilized in [4] and [5], respectively.
However, all of these methods still need NV, times of the
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matrix inversion process. Reference [6] proposed a
complexity reduced method for the SIC-MMSE scheme
which requires only a single MMSE filtering processes, by
deriving a non-layer dependent matrix, but its performance
was only demonstrated with non-iterative decoder such as
soft-output Viterbi algorithm (SOVA) for convolutional
codes.

In this paper, we propose a new efficient approach
which can largely reduce the complexity of matrix
inversion process for the SIC-MMSE schemes, using the
Taylor series expansion. The proposed method requires
only a single matrix inversion process instead of V; times,
and thus the complexity reduction effect becomes greater
with increase in the number of antennas. In addition, we
demonstrate the performance of the proposed scheme with
an iterative decoder for turbo codes for joint iterative
detection with the SIC-MMSE scheme.

The paper is organized in the following way. In Section
II, we first introduce the concept of iterative detection and
decoding for a coded MIMO system using the conventional
SIC-MMSE scheme. Section III presents a computationally
efficient matrix inversion scheme. Simulation results are
provided in section IV, and our conclusion is followed in

section V.

II. Concept of Iterative Detection and
Decoding Based on SIC-MMSE

1. System Model

We consider an iterative MIMO system based on
bit-interleaved coded modulation (BICM) transmission
strategy, with N; transmitters and N, receivers. During
the transmission process, information bits, ¢ is firstly
channel encoded to sequence, d, with an error correction
code. At the second step, after bit-interleaving of d, the
coded sequence is divided into NV; independent streams.
Each stream consists of M bits, where M denotes the
number of bits per symbol. Therefore, N:xM information
bits are transmitted in a MIMO frame [1].

Information bits in each frame are then mapped onto

symbols for transmission, denoted by S = [51,52,53,...,51\;]?

where s; (i=1,2,3,.,N;) is identically chosen from a
complex constellation X, with cardinality |X1=2". We
assume energy at each transmit antenna is equally

distributed, and channel coefficients are known at the

23

Then,
Y = (Y1 YpYs-Yn T can be represented with an NxN;

receiver. the received signal, denoted by

complex channel matrix H as follows [1]:

Y =HS+N, 6}
where N is an Nx 1 complex noise vector.

At the receiver, the SIC-MMSE detector calculates the
LLRs for NyxM bits from Y. Then, the de-interleaved
version of LLRs is sent to the channel decoder. After that,
LLR values are utilized either to make decision for
information bits, or feedback bit-interleaved version to the
MIMO detector. The same process is repeated until a fixed

number of iterations.

2. Conventional SIC-MMSE Algorithm

The basic concept of the SIC-MMSE detection is to
compute estimates of the transmitted symbols, based on
the a priori information provided by the channel decoder in
each iteration and cancel the interference. During the
the SIC-MMSE algorithm first

estimates, the soft symbol for the i-th layer, sz as follows

[21[7]:

detection process,

2J[
s, = Fls;]= ZProb[si =s,ls,
b=1

2
where Els;] is the expected value of s; and, s,=X.
The a priori probability of the symbol s, is denoted by:

M
Prob[si = sb} = H Prob[mmn = x], 3)
m=1

where z;, =|s,],, represents the m-th bit associated with

im

the symbol s,, and

mLa(xZ\m)
exp| =5
Pr[xi,.m J?}: I-La(wzlm) _x‘La(zi,m) , (4)
exp f +exp ﬁ

with z,,,€{—1,+1}. The LLR values provided by the
channel decoder as a priori information, Z,(z,,,) is set to
zero at the first iteration for all the M bits associated with
the i-th symbol. The variance of i—th transmitted symbol

is computed by [8]:
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Varls,] = E|sb\2.Prob[si =s,l|— |sAl . Q)
b=1

After computing the estimate of soft symbols and its
variance, the second step is to cancel the interference from
all other layers. Then, the interference cancelled i-th

vector is given by:

M .
Y, =Y— ] hs;=hs,+N, | ©)

Jj=i

where h; denotes the j-th column of H and the residual

interference plus noise can be represented by:

N,
N= Y he;+N. %)

Jj#i

After interference cancelation process, the MMSE
filtered vector is computed by [2][8]:

Pf=nla;t, ®)
where
A= (HAH +0%1,) ©)

and 4, is an NxN; diagonal matrix with entries

L B
I E,j=1i.

The estimate of the i-th transmitted symbol after

filtering process, 57 1S given as,
s, =P, = a5, +P/N, | (10)
with
o;= P, . 1L
Finally, the a posteriori LLR, L(z,,,) is approximated
to the system as NV; single-input single-output which are
statistically independent, and thus the weighted residual

interference plus noise (RIN) term PiHNi, follows a

Gaussian distribution[2][9]. This results in

|S1 - Oél-S|2 M xl’a(xi m)
Llz,,,) = mlnsexl@'z[ - fmZ:Jl 5 , (12)
1
|SL - aiS‘Z M xLa (xl m)
—min__ = -y :
SEX;.H.( ﬂ? g’ 2
where X and XY denotes the set of candidates

i, i,m

symbol vectors corresponding to z;,, =0 and z;, =1,

respectively, and (7 represents the variance which is

given by:

. ) N
Bf = Var[sj]= ]PZH E hjhf + o N

Qi

P, . (13)

II. Proposed Method with Computationally
Efficient Matrix Inversion

A large amount of computational jobs of the conventional
SIC-MMSE algorithm is occupied by the multiple inverse
operations during the detection process. This is because
the matrix A; in (8) is layer dependent in the conventional
SIC-MMSE algorithm. Therefore it requires the same
number of inverse operations as the transmit antenna.

In this section we present a new approach which
efficiently computes the inverse of the matrix, using the
Taylor series expansion. The proposed method needs a
single matrix inversion per iteration. The Taylor series
expansion formula can be used for a complex matrix X

with size of nxXn, as follows [10]:

I+X) ' =T-X+X2=X*++X= D (=X)" . (14
k=0

The eigen values for X should satisfy the following

condition:
A< 1, for p=1,-.n. 15)
Meaning that,
max1<p<n( > |p(qu)|+|3(qu)\ <1,
o (16)
max1<q<n(2p(xm)+ﬁ(xm)l <1,
p=1

where X, represents the element of the p-throw and g-th
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column of X. p(x,,) and J(x,,) represent the real and
imaginary part of x,,, respectively.
In order to use the Taylor series expansion formular,

we represent A; ' in (8) as follows:

Jl= (HVHT 4 6,) 7! (17)

Z Varls

J#Fi

N,
( E Var(s

Anht + B hh! 4 o™,

i (B, = Varls,)) bh{ + 0%1,
Let us define the matrix C as follows:
h h +o H

= (HAH"+ 0’L) , (18)

N;
C= ( E Var|s

and

e= E,— Varls,] . (19)

Then, (17) can be rewritten as,

A= ((T+enpfCH)C) 7. (20)

Let
X, = eh,hf'C!, 1)

then
Ajl=CHI+X,)7! (22)

As we can see, matrix C is not layer dependent matrix.
However, those modifications has some impacts on the
system performance. The similar problem has been shown
in reference [6]. Indeed, after a few iterations, A can get
close to zero and the inverse, C~! might become very
large. This implies (21) might not satisfy the conditions of
convergence for Taylor series expansion in [10]. In order
to meet those conditions, we modified the scaling approach
proposed in reference [6]. The main idea of this scaling

approach consist of scaling A to A as follows:

~ E A4,
A= :

=y for =1

AV, (23)

where Aisa NxN, diagonal matrix. The scaling ensures
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that, E/2<A < E, for i=1,

0,0 —

--,N,. Then the matrix
C in (25) can be rewritten as
C= (HAH"+ o°L,) 4)

and the matrix X; in (18) can be re-computed based on
(24) as follows:

X, = ehh'C 1. (25)
Then, (22) can be rewritten as,
AT'=C'I+X,) (26)

By applying the Taylor series expansion formula, the

final expression is given by:

@7

i,=C V(X
k=0

and the MMSE filtered vector is computed by using (27)
as follows:

Br-nE -

, for i=1,.,N,.  (28)

Then, the final estimation of transmitted symbol is found

as follows:
(29)

With this modification, we can estimate the inverse of
matrix in (8) per iteration, because (24) is not a layer
dependent matrix, but only depends on the channel. Then,
the complexity is largely reduced, compared with the
conventional SIC-MMSE scheme.

IV. Simulation Results

In this section, we compare the performance of
conventional SIC-MMSE schemes with that of the the
proposed method, in term of bit error rate (BER) for 4x4
and 8x8 MIMO systems over a Rayleigh fading channel.
We used a turbo code with 16—quadrature amplitude

modulation (QAM), and quaternary phase shift key
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(QPSK) scheme. The 3GPP defined turbo code with
information block size of 378 bits and a code rate of 1/3
was used, and the constraint length of each recursive
systematic convolutional (RSC) component code was 3.
Furthermore, we also analyze the complexity between the
both algorithms, in term of multiplications and additions.

Fig. 1 and 2 show the BER performance of the 4x4 and
8x8 MIMO systems using QPSK, with different number of
iterations. On the other hand, Fig. 3 and 4 show the BER
performance of the 4x4 and 8x8 MIMO systems using
16-QAM. In the figures, M and D; denote the number
of inner iterations made at the SIC-MMSE detector and
the number of outer iterations made at the decoder,
respectively. In the simulation of our proposed scheme, we
estimate k values of the summation in (27) up to 1, i.e. two
terms. As we can see, the proposed method produces
nearly the same BER performance as the conventional
SIC-MMSE scheme.

(M,.0,) C Proposed

.8

BER

1E-5 & 1 I 1
1 2 3 4 5

E/JN, (dB)

Fig. 1. BER performance comparison of 4X4 MIMO
system using QPSK over a Rayleigh fading

channel,

Proposed

EJN, (dB)

Fig. 2. BER performance comparison of 8X8 MIMO
system using QPSK over a Rayleigh fading
channel
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Fig. 3. BER performance comparison of 4X4 MIMO
system using 16—QAM over a Rayleigh fading
channel,
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Fig. 4. BER performance comparison of 8X8 MIMO
system using 16—QAM over a Rayleigh fading
channel,

Table 1 and 2 compare the complexity of the
conventional and proposed algorithms in term of additions
and multiplications per MIMO frame. We note that both
algorithm require the same complexity for (6), (9), (10),
(11), and (12). However, the complexities to estimate (8)
and (26) are different. Because we used the k values up
to 1, the order to estimate (26) in the tables is set to 1.

Table 1. The number of additions required

Process | Equation Conventional Proposed
Interf,
©) N,(4N,N,— 6N,) N,(4N,N,— 6N,)
cancel.
(4NN, + 2N2N,
) ) —2N,N,)
N,(4N2N,+ 4N 4
MMSE N,(14N?—6N, —1
. 8 (26) + 2N2N,— 2N, N,
filtering ' |+ @azprder
- QNT) order
+ E (4A\,7§72‘\,7;)ov-,tc1»—k)
k=1
Symbol
C L laoy + an 4N,N, 4N,N,
estimation
LLR
. (12) N, 2M2M+ M+ 1)) N,(2M(2M+ M+ 1))
estimation
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Table 2. The number of multiplications required

Process Equation Conventional Proposed
Interf, cancel. (©6) N,(4N,N,— 4N,) N,(4N,N,— 4N,)
(4N2N,+ N2+ 2N?N,)
+
MMSE N,(AN2N,+ 5N? | N, (18N — 1
VSR @) oy | NN N NS NUISY T
filtering + 2N2N,) + (2ND)
order
+ E (4]\]73)01‘(1(’7‘*16)
k=1
Symbol
Ym . 10) + (11) 8N, N, 8N, N,
estimation
LLR
. 12) N, MM+ )| N, (2M (2 4 M)
estimation

Fig. 5 shows the complexity comparison between the
conventional and the proposed methods, in terms of
multiplications and additions. The number of operations
presented in Fig. 5 are estimated at each MIMO frame
when M;; equal to 1, and these will be linearly increased
by M. Since estimation process of (6), (10), (11) and (12)
are the same, the complexities to estimate (8) and (26) are
compared. We can see that the complexity is largely
reduced with our proposed method as the antenna size is
increased. This is mainly because the conventional
SIC-MMSE detector requires M;xN; matrix inversion
processes, while the proposed method requires only M;

matrix inversion processes.

Conventional  Proposed

60000 | i e o

50000 -

ions

40000

30000 |-

Number of Operat

20000 |-

10000

s
" " 1 n
2 4 6 8 10
N

Fig. 5. Complexity comparison per MIMO frame when M;
=1, (N=N).

V. Conclusion

In this work, we proposed a new efficient approach to
find an approximate of the matrix inverse for the

SIC-MMSE scheme with less computational complexity.
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The proposed method utilized the Taylor series expansion,
and needs only a single matrix inversion per iteration, and
thus complexity is reduced by NV, times compared with the
conventional scheme. The proposed method produces
almost the same BER performance as the conventional

SIC-MMSE scheme, with low computational complexity.
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