• 제목/요약/키워드: Input constraints

검색결과 325건 처리시간 0.03초

Application of Genetic Algorithm to Control Design

  • Lee, Yoon-Joon;Cho, Kyung-Ho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.123-128
    • /
    • 1995
  • A classical PID controller is designed by applying the GA (Genetic Algorithm) which searches the optimal parameters through three major operators of reproduction, crossover and mutation under the given constraints. The GA could minimize the designer's interference and the whole design process could easily be automated. In contrast with other traditional PID design methods which allows for the system output responses only, the design with the GA can take account of the magnitude or the rate of change of control input together with the output responses, which reflects the more realistic situations. Compared with other PIDs designed by the traditional methods such as Ziegler and analytic, the PID by the GA shows the superior response characteristics to those of others with the least control input energy.

  • PDF

트리 구조의 BOM(Bill of Material)에 기초한 고성능 MRP(Material Requirement Planning) 시스템 (High performance MRP(Material Requirement Planning) system based on tree-structured BOM(Bill of Material))

  • 나홍범;이형곤;박진우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.601-602
    • /
    • 2006
  • The primary role of MRP(Material Requirement Planning) is to make a production plan so that we have an exact quantity of right materials on needed time at right place. But the ignorance on capacity constraints makes some problems whenever production schedule is established. To increase the performance of MRP system, a novel approach which is based on new input data structure is suggested. The new input data structure includes all the information about Material BOM, Routing and resource data so that we can easily examine the usage of resources and generate higher performance production plans.

  • PDF

소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구 (Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

천정형 크레인의 흔들림 억제제어에 관한 SOS 접근법 (Anti-Swing Control of Overhead Crane System using Sum of Squares Method)

  • 홍진현;김철중;좌동경
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.407-413
    • /
    • 2013
  • This paper proposes anti-swing control of overhead crane system using sum of squares method. The dynamic equations of overhead crane include nonlinear terms, which are transformed into polynomials by using Taylor series expansion. Therefore the dynamic equation of overhead crane can be changed to the system of polynomial equation. On the basis of polynomial dynamics of crane system, we propose the Sum of Squares (SOS) conditions considering the input constraints. In addition, control gains are obtained by numerical tool which is called by SOSTOOL. The effectiveness of the proposed method is demonstrated by numerical simulation.

시변 시간지연을 가지는 입력제한 시스템의 모델예측제어 (Model Predictive Control for Input Constrained Systems with Time-varying Delay)

  • 이상문
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

가뭄시 용수공급지장으로 인한 경제적 파급효과 분석 (The Economic Impacts of Water Supply Constraints During a Drought Using input-output Analysis)

  • 최장환;허은녕;심명필
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.647-658
    • /
    • 2000
  • 본 연구에서는 공급측면 산업연관분석모형을 사용하여 물공급지장이 끼치는 산업의 전방효과를 분석하고자 하였다. 여기서 분석된 공급지장비용은 수도사업의 신뢰도 결정에 사용될수 있으며 물의 공급부족이 발생할 경우 물의 효율적 배분을 위한 정책적 기초를 제공할 수 있다. 따라서 산업연관분석을 이용하여 수도부문이 차지하는 국민경제적 위치를 확인하고 공급지장으로 인한 산업간 직·간접 피해를 분석하였다. 또한 가뭄시 중요한 공급우선 순위 결정을 위한 공급지장지수를 제안하였다. 한편 가뭄의 발생은 지역적인 특성을 가지고 있어서 전국산업연관표를 이용한 지역수준의 공급지장비용이 과대 도는 과소평가될 여지가 있다. 따라서 경남지역산업연관표를 통해 산정한 공급지장비용을 전국산업관표와 비교·분석하였다.

  • PDF

주 사용자의 간섭을 고려한 Opportunistic Spatial Orthogonalization의 활성 부 사용자 선택 알고리즘 (Active Secondary User Selection Algorithm of Opportunistic Spatial Orthogonalization Considering Interference by a Primary User)

  • 유강현;김용화;이한별;김성철
    • 한국통신학회논문지
    • /
    • 제36권11A호
    • /
    • pp.892-902
    • /
    • 2011
  • Cong Shen과 Micael P. Fitz에 의해 제안된 OSO(opportunistic spatial orthogonalization)는 주 사용자가 모든 라이선스 주파수 대역을 점유하고 있는 동안에 부 사용자들이 그 주파수 대역을 동시에 사용할 수 있도록 하는 기법이다. 본 논문에서는 single-input multi-output system을 기반으로 하여, 주 사용자의 송신 전략을 유지하며 주 사용자의 송신기에서 활성 부 사용자의 수신기로 가는 간섭을 고려한 활성 부 사용자 선택 알고리즘을 소개한다. 제안한 알고리즘은 주 사용자에게 최소한의 전송 용량(throughput)을 보장하며 기존 OSO 방법보다 더 높은 성능을 보인다. 우리는 모의실험을 통해 여러 제약 조건 하에서 제안한 알고리즘의 성능을 검증한다.

축-토크법을 이용한 새로운 발전기 효율시험 방법의 제안 (Proposal of A Novel Generator Efficiency Test Using The Shaft-Torque Method)

  • 김현한;옥연호;김광호
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.461-468
    • /
    • 2014
  • An efficiency test for generators is generally required in case of construction of a new power plant or replacement of an existing generator. Generally, the efficiency of generator is measured by the input-output ratio under any given condition. Therefore, the best way is to directly measure the value of input and output power of a generator and calculate the efficiency values. However, it is difficult to measure a generator's input values accurately, especially for large systems. So, we are usually measuring the losses of the generator. But for measuring these values, there are several constraints for test such as preparing additional power generator and releasing the protection relay for manual operation of auxiliary equipments. Therefore, this study suggests that a novel generator efficient test method using the shaft-torque method which can be carried out while the generator is normally operating. The reliability of the result value was verified by comparing with the efficiency test results of the conventional retardation method on IEEE Std 115-1995.

단결정 압전섬유작동기를 사용한 능동 비틀림 로터 블레이드의 최적 설계 및 진동하중 해석 (Design optimization and vibratory loads analysis of active twist rotor blades incorporating single crystal piezoelectric fiber composites)

  • 박재상;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.85-92
    • /
    • 2007
  • This paper presents a design optimization of a new Advanced Active Blade Twist (AATR-II) blade incorporating single crystal Macro Fiber Composites (MFC) and conducts vibratory loads reduction analysis using an obtained optimal blade configuration. Due to the high actuation performance of the single crystal MFC, the AATR blade may reduce the helicopter vibration more efficiently even with a lower input-voltage as compared with the previous ATR blades. The design optimization provides the optimal cross-sectional configuration to maximize the tip twist actuation when a certain input-voltage is given. In order to maintain the properties of the original ATR blade, various constraints and bounds are considered for the design variables selected. After the design optimization is completed successfully, vibratory load reduction analysis of the optimized AATR-II blade in forward flight condition is conducted. The numerical result shows that the hub vibratory loads are reduced significantly although 20% input-voltage of the original ATR blade is used.

  • PDF

슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어 (Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller)

  • 이일로;이영우;신동훈;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.