• Title/Summary/Keyword: Input Shaping Technique

Search Result 40, Processing Time 0.025 seconds

A study on the power factor improvement of the Boost Forward Converter (BF 컨버터의 역률 개선에 관한 연구)

  • 임승하
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.56-63
    • /
    • 1999
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF (Boost Forward) converter with PWM-PFM control technique to control DC output voltage, and to control the input current with sinusoidal wave synchronized by the converter and inverter using power switching element, FET and IGBT. The control circuit of the suggested Boost converter is implemented with a microprocessor 80C196. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. We control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally. PF can be improved up to 0.96 using the current shaping technique.

  • PDF

A study On the Switching Technique of Boost Converter for Harmonic Reduction (부스트컨버터의 고조파저감을 위한 스위칭 기법에 관한 연구)

  • Shon, Jin-Geun;Chu, Sun-Nam;Kim, Young-Hyuk;Lee, Sang-Cheol;Lee, Bok-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.74-78
    • /
    • 2000
  • In this paper a switching control circuit for shaping the line current and reducing the total harmonics distortion in the boost converter is presented. To solve the problems of performance degradation due to pulse waveform in the input current, the boost converter in which the harmonic distortion in the input current is reduced using a 3th harmonic-injected PWM is proposed. Finally, Simulation and experimental results of boost converter with 5[kHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

3rd SDM with FDPA Technique to Improve the Input Range (입력 범위를 개선한 FDPA 방식의 3차 시그마-델타 변조기)

  • Kwon, Ik-Jun;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.192-197
    • /
    • 2014
  • In this paper, $3^{rd}$ SDM with FDPA(Feedback Delay Pass Addition) technique to improve the input range is proposed. Conventional architecture with $3^{rd}$ transfer function is just made as adding a digital delay path in $2^{nd}$ SDM architecture. But the input range is very small because feedback path into the first integrator is increased. But, proposed architecture change feedback path into the first integrator to the second integrator, so input range could be improved about 9dB. The $3^{rd}$ SC SDM with only one operational amplifier was implemented using double-sampling technique. Simulation results for the proposed SDM designed in $0.18{\mu}m$ CMOS technology with power supply voltage 1.8V, signal bandwidth 20KHz and audible sampling frequency 2.8224MHz show SNR(Signal to Noise Ratio) of 83.8dB, the power consumption of $700{\mu}W$ and Dynamic Range of 82.8dB.

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

Design of $H_{\infty}$Controller for the inverted pendulum system (도립진자 시스템의 $H_{\infty}$ 제어기 설계)

  • Seo, Kang-Myun;Kang, Moon-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1796-1803
    • /
    • 2006
  • This Paper describes a systematic method for designing the $H_{\infty}$ controller for the inverted pendulum which is a nonlinear and single-input double-outputs system. In particular, the open-loop system is conbined with a pre-filter to shape the open-loop transfer function for the sensitivity function ind the complementary sensitivity function to be kept the desirable frequency characteristics. Consequently, the loop shaping technique of the open-loop transfer function reduces the impacts of the model uncertainties, measurement noises and exogenous disterbances on the dynamic characteristics of the inverted pendulum. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method.

63Mbps One-to-One Video Transmission Wireless Scheme in a Single-carrier Modulation with 2×2 Multiple Input Multiple Output (2×2 MIMO를 적용한 63Mbps급 단일 반송파 변조 방식의 일대일 영상전송 무선방식)

  • Paik, Junghoon;Kim, Namho;Kim, Young Woo;Hwang, Yongseong
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1143-1151
    • /
    • 2019
  • In this paper, we propose a wireless transmission scheme that maximizes transmission efficiency per frequency bandwidth in a single carrier modulation scheme. The proposed scheme employs a decision directed channel tracking technique to remove both pilot signal and the guard interval signal between symbols in frames. It performs a raised cosine pulse shaping function with an roll-off factor of 0.05. In addition, 2×2 multiple input and multiple output using two polarized antennas is applied and both equalization and signal separation are performed in the frequency domain. The wireless modem with this technology confirms that the transmission speed of up to 63.3Mbps is achieved under the 5MHz frequency bandwidth

Are theoretically calculated periods of vibration for skeletal structures error-free?

  • Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.17-35
    • /
    • 2012
  • Simplified equations for fundamental period of vibration of skeletal structures provided by most seismic design provisions suffer from the absence of any associated confidence levels and of any reference to their empirical basis. Therefore, such equations may typically give a sector of designers the false impression of yielding a fairly accurate value of the period of vibration. This paper, although not addressing simplified codes equations, introduces a set of mathematical equations utilizing the theory of error propagation and First-Order Second-Moment (FOSM) techniques to determine bounds on the relative error in theoretically calculated fundamental period of vibration of skeletal structures. In a complementary step, and for verification purposes, Monte Carlo simulation technique has been also applied. The latter, despite involving larger computational effort, is expected to provide more precise estimates than FOSM methods. Studies of parametric uncertainties applied to reinforced concrete frame bents - potentially idealized as SDOF systems - are conducted demonstrating the effect of randomness and uncertainty of various relevant properties, shaping both mass and stiffness, on the variance (i.e. relative error) in the estimated period of vibration. Correlation between mass and stiffness parameters - regarded as random variables - is also thoroughly discussed. According to achieved results, a relative error in the period of vibration in the order of 19% for new designs/constructions and of about 25% for existing structures for assessment purposes - and even climbing up to about 36% in some special applications and/or circumstances - is acknowledged when adopting estimates gathered from the literature for relative errors in the relevant random input variables.

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF

Entrepreneurial Performance: The Role of Literacy and Skills

  • SARIWULAN, Tuty;SUPARNO, Suparno;DISMAN, Disman;AHMAN, Eeng;SUWATNO, Suwatno
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.269-280
    • /
    • 2020
  • This research aims to determine the direct and indirect effects of digital literacy, economic literacy, and entrepreneurial skills on the performance of small- and medium-sized enterprises (SMEs) in garment clusters in the Bulak tourism industry Depok. Carrying out quantitative research with survey methods, data collection is using a questionnaire technique with 90 respondents, via saturation sampling. This research data analysis uses SPSS software version 25.0. Path analysis is used to determine the direct and indirect effects between variables. The results showed digital literacy, economic literacy, and entrepreneurial skills significantly and positively affect the performance of small- and medium-sized enterprises. The main finding in this study is that digital literacy has the greatest influence on the performance of SME entrepreneurs, both directly and indirectly. The results of the study provide input on performance development strategies for SME entrepreneurs through digital literacy, including digital business relationships, online facilities, and networks. The findings are also complementary to the factors shaping the performance of SME entrepreneurs in the digital age. The research results show that digital literacy has the greatest direct and indirect influence on the performance of SME entrepreneurs; this shows the essential contribution of digital literacy in developing business and marketing networks.

Group Delay Time Matched CMOS Microwave Frequency Doubler (군지연 시간 정합 CMOS 마이크로파 주파수 체배기)

  • Song, Kyung-Ju;Kim, Seung-Gyun;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.771-777
    • /
    • 2008
  • In this paper, a frequency doubler using modified time-delay technique is proposed. A voltage controlled delay line (VCDL) in the proposed frequency doubler compensates the group delay time mismatching between input and delayed signal. With the group delay time matching and waveform shaping using the adjustable Schmitt triggers, the unwanted fundamental component($f_0$) and the higher order harmonics such as third and fourth are diminished excellently. In result, only the doubled frequency component($2f_0$) appears dominantly at the output port. The frequency doubler is designed at 1.15 GHz of $f_0$ and fabricated with TSMC $0.18\;{\mu}m$ CMOS process. The measured output power at $2f_0$ is 2.67 dBm when the input power is 0 dBm. The obtained suppression ratio of $f_0,\;3f_0$, and $4f_0$ to $2f_0$ are 43.65, 38.65 and 35.59 dB, respectively.