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ABSTRACT

In this paper we propose a controller design methed, called Quasi-LQG/H../LTR for nonlinear serve systems with
hard nonlinearitics such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb [riclion and
dead-zone, the statistically linearized system is built. Then, we consider the H,, performance constraint [or the
optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modificd Riccati
equalion of which solution leads to an upper bound of ihe LQG performance. As a result, the nonlinear correction term is
included in coupled Riccati equétion, which 1s generally very difficult to bave a numerical solution To solve this
problem, we usc the modified loop shaping lechnique and show some analytic proofs on LTR condition. Finally, the
Quasi-LOQGH,/LTR controller for a nonlinear sysiem is synthesized by inverse random input describing function
techmgues (JRIDF). It is shown that the proposed design method has a belter performance robustness to the bhard
nonlinearity than the LQG/H, /TR mcthod via simulations and experiments for the timing-belt driving servo system that
contains the Coulomb friction and dead-zone.

Keywords : RIDF, LQG/ H,,, LTR, coulomb riction, dead-zone, urmng-belt driving serva system

nonlincar servo systems under any acceprable conditions,

L. Introduction it is very desirablc to develop the generzal nonlinear
conircller design methods.

For a servomechanism, hard nonlincar elements such For this problem, Beaman developed the nonlinear
as Coulomb friction. dead-zone and backlash are often quadratic Gaussian control method [4], which combines
appeared. These nonlinear elements make the exact the optimal estimation and contrel {or statistically
control of a servo system to be difficult. To avoid this linearized systems. This method, however, has the
problem. several differcnt control methods need to drawbacks that selecling design parametets 15 complex
design a nonlinear coniroller as (o each hard nonlinear and the nonlinear correction term is ofien complicaled. In
characteristic such as friction [1], piecewise saturation addition, NQG control does not fully address
[2] and satwration [3], but unified and systematic performance and stability robusiness issues. In order to
approaches for a hard nonlinear multivariable servo solve these and othci issues, the nonlmear quadratic
system have not fully developed yet. Generally, the linear Gaussian  confrol  with  loop rransfer recovery

approxtmaiion control methods by  Taylor senes (QLQG/LTR,) [5] that has the LQG performancs criterion.
expansion are limited in their applicability dne to the The QLQG/LTR method. however, often has a weak

discontinuous differentiability of nonlinearities. It is point in face of the uncertainty of the system than aH,,
known that the use of statistical linearization techniques norm-based control meihod.

can be effective for many problems for hard nonlinear In this paper, we will develop the Quasi-
servo systems. Il the systematic multivariable control LOQG/H./LTR method for a hard nonlinear system as a
methods of the linear systems can be applied lo hard generalization of the QLQG/LTR method to consider

=
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additional H. robusmess. For a lnear system. the
LQG/H/LTR method [6] have developed, which was
derived [rom the Doyle’s mixed H2/ H,, method [7]. But
Yeh's LOG/H,/LTR method mainly focnsed on the loop
shaping method only and was nol interested 1 a hard
nonlinearity. The proposed Quasi-LQG/H./LTR method
derives from LQG/H, control method [8] and ihe
QLOQG/LTR method to get advantages of two methods,
The main design techniques that are ncluded in our
method are the random input describing Function (RIDEF)
IRIDF |10,i17 and wmodified LTR.
Therefore, our proposed method can guaraniee stability-

technique [9],

robustness (in sensc of H.. - norm bound) and nominal
performance (in sense of LQG cost bound) as well as
rabusiness to hard nonlincarties. Our method is a general
version of the QLOQG/LTR mcthod because if H.. - norm
parameter 7 approaches  jnfinity. then  Quasi-
LOG/H, /TR control becomes the QLOG/LTR. A
liming-belt diiving servo system containing Coulomb
irictions and dead-zonc is 1o cxamine the robustness of
the controller o the bard nonlinear cffects through
stmulations and experiments & show performance of the
proposed control method.

2. Modeling the Nonlinear Servo System

A schematic diagram of the nonlinear servo sysiem
with Coulomb (riction and dead-zone is shown in Fig. 1.
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Fig. 1 A schemalic diagram of the wming-belt driving

SCTVO syslem

In servo mechanism. in order to transmit a power
between axes or ta carry a cart {or the translation motion,
a tuming-belt often is used. For a light load. a iiming-beht

%)
Qo)

system need no lubricalion and no sliding between belt
and pulley teeth have fast transmission of the power
under lower noise than a gear syslem. Specially. when
the distances between two axes are large. the nming-belt
15 very appropriate. Because of these properties. the
timing-belt is often chosen for a robot gystem and many
anfarpatic  mechanisms. However, if the distances
between the axes are larger and moving loads that are
connecied (o bell exisl, a guide for moving loads must be
considered to prevent the deflection of the belt. [n this
casc. the Counlomb friction between the contacting
surlaces of guides amd moving loads can appear.
Furthermore, a dead-zone may be accompanied due to
the loose engagements between pulley and belt.
Therefore, these nonlmeariies must be considered where
the timing-belt is chosen as a power transmission device.

[n this paper, the cart is connected with timing-belt in
13 lower part, and moves through iwo sliding guide axes.
Two pulleys are connected 1o a timing-belt, and one side
ol pulley is combined with a servo DC motor. A FDD-
L02PD motor driver drives the servo DC motor of FMID-
EI0EA of LG incorporation attaching the incremental
rotary encoder with 1000 pulsefrev resolution. The PC
DSsp of TMS320C

processor of dSPACE incorporauon reads the pulse from

containing systern  composed

the rotary encoder and sends the control cormmand
through D/A converter to the motor driver. Fig 2 gives

the photograph of the timing-bell driving servo system.

WS e
Fig. 2 Photograph of ihe timing-belt driving servo system

In this cart. a Coulomb [nclion exists belween Lhe
sliding guide and cart contacting part and a dead-zone
phenomenon is ebscrved in combing part of the pulley
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and timing-belt. Since the cart system have the motions
of translation and rotation exist, in order to simplify the
problem, two motions can be transformed into a
equivalent translation motion as the foliowing dynamic
equation:

M 500+ C oy 5(1)+ Fpysgnii) = Dz-Fy () (1)

where w(r) is the position of the cart and M, ,

Ceq » Frg . Dz, F() represent the equivalent
values of mass, friction, Coulomb friction force and
dead-zone of the entire system. Table 1 shows the valuc
of system parameters. If the nonlinear plant is linearized
statistical then the

statistically

via linearization techniques.

Table 1 Values of the system parameter

Name yalues of parsscice
guide length 100 com
distance between pulley 92 cm
guide diameter 2 em
Ty (radius of pulley) 2.83 em
pitch of pulley 17.78 em/frev
0.003767
M,, )
Kgf -sec” lom
0.24553
Cog
Kgf -sec/cm
Frg 042714 Kgf
& (width of dead-zone) 0.25117
K amp 1.5714 Kgf -em/{V

linearized state space model can be described as follows:
x(fy= N(o )x(t) + Bu(t)

y(t) =Cx(t) @
where
0 I 1
Nie)=¢ LN B= m)\r& .
My My ™
c=[1 o,

Craddin
Ny = N, =l—erf[—§—}
T 42

JII

Ny and N, are the DF gains for Coulomb friction
and dead-zone, & is the width of dead-zone and o,
and o, are the standard deviations of the state variable
x5 and control input w(?), respectively.

3. Quasi-LQG/H/LTR Control

We will develep the Quasi-LQG/H,/LTR control in
order to design the controller for the previously given
statistically linearized model. The sth-order stabilizable
and detectable plant and weighted errors can be given by

Xt} =N (a7, )+ Bult)+D,w, (1)

2 =E;(Dx(th gz (1y=E4 (thu(t)
21 (1) = 1 (DX(0), 2 5o (D)= E g, (D2e(1)

YO =Cx()+Drw, (1)

where N (O‘A) 15 the (mxn) statistically linearized

(3

ptant and o, is the standard deviation of the plant
states. Then the 5, -order nonlinear dynamic controller
can be obtained by
W)= N (o, Jz(t+ Hy(t)
a(t) = Gzit)

wherc N(crz) is the (m.xn,) statistically linearized

4

controller matrix and <. 1s the standard deviation of
the controller states, and which meets the following
design criteria ;

1) the closed-loop system equation (2) is asymptotically
stable;

2ythe g, xp closed-loop transfer function matrix

Tyc (8) =B (sl ~Ney D (5)
from W(f) to Z,_ satisfies the constrainl
1Tcl.. <r (©)

where » isa given positive constant  and

B = 0w 0F (1) =210 (), 22 0]

5| Ni@.) BG [P0 ’Ew:Efmﬂ .
HC N:(G:) 0 HD;_} 0 ng

3) the performance functional

J(N (o), HG)=1im E[x" (DR x(0)+ u” (DR, u(s)]
s 1=3]

ﬁ(:limE[f(f)i:T(r)]) is the steady-state
e

closed-loop state covariance, which satisfies the (7%
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algebraic Lyapunov equation

NO+ONT+V =0 {7
whore W is the power spectral density of the Gaussian
white noise mput, B is the control weighting matrix.
and
R, 0
0 G'R,G

}, R,=E[E, R, =ElE,,

~ |V; @
V= - V=00 v, =D,D] .
0 HV,H
The state equalion of the closed-loop sysiem may be
wrilien as
F(O=NF()+ DF(t) (8)
where E(r)=[x(Nz(7

3.1 Quasi-LQG with the Constraint of H_
Disturbance Attenuation

The key step of the minimization issue in 3) is to
satisfy the following result [8]. Let (N _(c.).H,G)be
given and nonnegative matrix QDE RTE satisfying the
algebraic Riccali equation

NQ +O . N+v 0 R, 0, +V=0 )]
where
R, 0
0G'R,.G

e =

T
} ’Rfm =E}n:>E]ao l

R, =El E, =pf°R, p isanonnegative conslant.

Mow, similar to the lincar case [8], the [ollowing
results can be obtained except the statistic functions and
nenlincar correction terms.

Riccali equations:
NQ+ONT +y QR O-0CTVICOwv =0  (10)
(N +7 1@ +QIR,,) P+ P(N +772[Q + Q1R . )+ Ry
~-STPBR;'BTPS+W(P.0.ON) =0 (11)
(N-BR;'B"PS+y QR )0+((N -BR,'BTPS
+y P OR )T+ PQ(R,, + B2STPBRS BT PS)Y)

+aCTvicg =0 {12)
where
S=(I, + 22 0P)",
(B Q0N =P SYT) G | Gy
2@ +Q)

Controller parameters:

[ 3=}

1

N.(c_)=N-BR;'B"PS QC™v;!C+y7?0R,,
(13}
H=0C™vi!, G=-R;'B"PS (14)
Note that these results are the version for a
statistically hnearized system as the counterpart for the
linear case [8] excepl DF and nonlinear comrection terms

Equation (1) can be solved
independently, but equation (11) and (12) are coupled

in equation (12).

and so must be salved simultaneously. Furthermore,
equation {12) contains nonlinear correction terms. ¥,
which is very difficult to obtmn the solution. If the
nonlinear correction term can be neglected by simple
techniques, the controller for hard nounlinear systems can
be easily designed similar to linear systems. For this
problem, thus, we will show that LTR techniques for
statistically linearized systems give another advantage to
eliminaie nonlinear correction term in equation (12).

3.2 Design of the Target Filter Loop

To develop our loop shaping problems, without loss
of generality, we suggest some assamptions with terms
commeonly used in the optimal control problems. A
fictitious process and measurement white noise is
considered for loop shaping and the modified Kalman
filter [requency domain equality (KFDE) is also uosed.
The statistically linearized design plant

X(F)=Nx @)+ Bu(r)+ Lw; ()

Y =Cx () +Daw 5 (7)
where
Elw,;(0]=0,Efw ()] = 0, Elw ; (Hw] (1 +1)]=18(z).
Elw, (0wl ¢+ 0)]=18(0).V, =D, DT =LL".

v, :D,D;‘ =ul, g = apositive constant as a design

(15)

parameter.
And wcighting matrices for estimated errors and
control are defined as

R, =C"C,Ry =pI.R;,, =CTC 1y f=0,R,, =0.
S=1,a™”

2 = a positive constant as a design parameter.

=1—;'“2 <y <o i< a<o,
Then the Riccati equations can be expressed as
follows:

-2
NO+ONT +LIT 2 _gCcTc =0 (16)
i
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(N +ﬁ[Q +01IC7C)Y Py P(N+ [Q +Q1c7C)
H
-|-CTC—iFBBT17+W(E§,Q,N):0 (17
o)

~N-LBBTEL QCTC)Q N-LBBTP+
£ “ P

QC oy 7 QC cp+— ECTCQ:a (18
M

Because the prmc:lple of separation holds one
direction, equalion (16) comresponds to the Riccati
equation to obtain a filter gain that is broken at the plant

output. The target filter loop funciion matrix Ggp (s) is

writtcn by
Grp(5)=C(sI -N)"'H (19)
The filter gain A can be obtained [rom equation (16).
w-Locr (20)
XU
The remaining controller dynamics are
N.(v.)=N-aHC + BG 21
G=-Lg"p (22)
fe,

Fig. 3 shows the structure of the Quasi-LQG/H, /LTR
contral systemn for the statistically linearized system.

[

g||_| o

(o) e :)
[

Fig. 3 The structure of the Quasi-LQG/H./LTR contiol
system

3.3 LTR using the Nonlinear Cheap Control

In order to design the control gain G, equation (17)

and {18) must be solved. However, the conirol gain G
cannot be obtained since, as stated previously, equation
(), which
15 very difficult to calculale directly. Therefore, let us

(18} contains the nonlinear correction lerm,

introduce the nonlinear cheap comtrol problem [or this
problem by examining the order of magnitude of the
nonlinear correction lexm. Then let us define the LTR
index g to show that the order of magnitude of the LTR
index is same as that of the nonlinear correction torm,
Definition 1. The LTR index g is defined as following
form;

= w2 101G+ e cf-o-JrT | JeT ey

<<l {23)

For scalar case (B=C=L=1},

g= N+;rf"2/,1([§+Q]H-p”2<<} (24)

This definition comes [rom equation (18) as
following statements:

When p-—>0, then

PN =y =2 ) 40 + Q])CTCH

”c"'c‘ are finite, and

HCTC)J;“HBTJ?U/ sz]BB? “”FU’ Ip (25)
or

el

Rearranging the above equation, Lhen
"F(N w2 g+ Q])C%”s
2N
HFH-"(N ey +Q])CTC||<<”CTCH

"(N 432 1 4D +ODC Tcﬂ <<HcTcl 17

",
~(|sB7 | Jecis '

Dividing the left term by the right term fiom cqualion
(28), the definiton for the LTR index g can be
established.

From now, we will show that the order of magnitude
for "l,ff" ts equivalent lo that of the LTR index (g} as
p — 0. For simple scalar case and the parameters of the
controller are

N =sN-a7H+G, H=0/yu. G=-Pjp.(29
Let ns exarmne the Lt behavior of the LTR index
refated to the simplitying of this problem. Next we can

check the order of magnilude of H and & . respectively
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from equation (16}, (17), {18) and (29),

DIN>> 173 and  |N]>>14Jp
o(H)=0(2° N}, o(G)=0(2N + 472 N) (30)
DIN|<< It and  |N|<<1ifp (11 fu<<ttfp)
o) =0’ 1), o(G)=0(ll[p) U

and from equation (9), the weighted scalar variance can
be calculated as

v D+ Q)1 =
—(N(2N+2G—a_ZH)fGH)/(QN-«-BG—af—zH)
+{(N(ZN +2G -« *H)-GH) (2N + 2G -2 > H))*
—y TV ) (32)

Finally, checking the different orders of magnitude
for the LTR index, it will bc shown that the nonlinear
correction term in Riccati equation can be neglected and
the moditied coupled Riccati cquation is the same as the
iinear one.

Theorem 1. 1f the good LTR is guaranteed, the order of
magnitude of the LTR {g) approaches 8 as o —0 .

Proof :  From equation (30). (31} and (32). let us divide
the procedure of proof into the following four cases.

Casel.: |N|>> 1/\/; and |N|>>]/J; (g>=1)
a(H)=0(2a’N)
olGY=0(2N + 477 N)
oly 2 1 1@ + ON=o0(0)
Since  o(g(= ”N"))<<1/JE , the given condition
|N|>>H,‘E is not satisfied il p— @ . Therefore, 1n
case g-» 0, the possibility of g»>7 does not exist.
Case 2. : ‘N|;1/J; (g=1)
o(H)=0(2e" N)
o G)=0(2N +47 2 N)
oy 1 14Q -+ QN=0(0)
Since o(g(= ||N”))‘=~j, the given condition ‘N|g1/\/;
1& not safisfied 1f p— @ Therefore, in case p— 0, the

possibility of 4=~/ does not exist.

Case 3. : H@«]N’«j/@ (ge<t )
o(H)=o(2a° N)
o(G)=o(1//p)
o3~ 1 (@ + ON=0(0)

It p— 0, the given condition IN[<<];‘ o 1s satisfied.
Therefore. in case p—0 . the conditten of g<<l i8

satisfied.
Case 4. |N‘<< 1/\/;«]/\/; (qe<l)

la(H)=o(az 1
o(Gr=0(1/+{p)

]o(ﬂ 1@+ O=otl Jula? 124y 14-5720, )
If ¢ Vv, and p are fmite, then 32/ + () 18
finite in the stable

olat= W72 @ + G <<t

system and

If p—3 0 . the given condition |NJ<<N o is satisfied
and g<<J is also satisfied. Therefore, ¢ approaches 0
as p— () because ||N" is lmile in the stable system

that has finite inputs.

Note that from Theorem 1, the LTR conditions for
the sfatistically linearized system are lhe same as the
linear one since the order of magnitude of the nonlinear
correction term “l}f" is that of g When (he LTR

conditions are satsfied, the correction term can be
neglected and the modified coupled Riccati equations are
the same form as the lincar case. When the LTR
conditions are satisfied. the correction term can be
neglected and the modified coupled Riccati equations are
the same form as the linear case.

Next, we will derive the limiting behavior of the
loop transfer function matrix at the plant output. From
equation {17), if the LTR condition is satisfied, limiting
behavioras p—0 is

cTe-(PBiJp) (BTPIfp)—>0 33)
Substituling control gain G =—BYP/p into eguation
{33)

G (o) UC (34)
This implies that
lim / pG >UC (335)

=0
where 17 is the mx munrtary matrix, ie, [77{/=J
We consider the controller TFM. K (s} as
K(s)=-G{sI-N -BG+a“HC)'H (36)
IfRe 2 (¥ + BG) <0,

m’

Theorem 2,
Re 4,(N +a"HC)<0, and  lim \[pG->UC , then the
=0

limiting behavior of the K(s) as p—>0 isas follows:
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lim K(s)-31C(sI - NIBT[C(sI - N)Y T H)
f2a

=G ()G gp (5) (37)

Proof : Proof is simple and is omitted.

3.4 Quasi-LQG/H /LTR Controller Synthesis

In order to calculate the statistic vatues of the
controller, DF gains for nonlinearties should be assumed
before they are calculated since the statistic values of
nonlinearity cannot be known previously. Their exact
values can be obtained by solving the modilied Riccati
equation (%) of the closed-loop lor the compensated
system. But the DF with respect to hard nonlinearity is
originally derived in the sense of LQG optimizalion.
Thus instead of equation (9). the following Lyapunov
equalion of the closed-loop for compensated system must
be introduced in order to calculate the exact values of DIF
gains and other statistic properiies.

NQ.+0,. N +V=0 (38)

where
' Nio,) BG ra v, 0 ”
HC N (o)) 0HV,H'

If we consider the nonlinear corrcction term in
equation (17) in the cheap control problem, then we must
salve equation (17) and equation (38) simultaneously
with respect to the guesscd unknown variables
[Qn:n(Zn +I),Pin(n+1)12] where » is the number of
plant states. Since it requires a greal deal of computation
time for a higher-order plant, 1t 15 very difficult to {ind
the solution. Fortunately, as a resuli of cheap control
problem shown in theorem 1, when the good LIR
condition is satisfied, the nonlinear correction lerni.
¥(1, in equation (I7) can be neglected. Hence the
control  gains and the stationary statistics of the
compensated system can be separately calculated [rom
the LTR procedure and modifisd Riccati equation.

Next, the sot of DF gains whose parameters depend
on the stationary statistics of several inpul ranges can be
converted into the nonlinear function that can be
cxecuted via the IRIDE {echniques. Atherton [10}
presented the theoretical explanations of the IRIDF
lechmiques. For practical applications, howcver, the
approximated method suggested by Suzuki |11] is more

convenient to converl DF into the nonlinear function..

The design procedure of the Quasi-LQG/H /LTR
control system s similar to QLQG/LTR casc [5], and
thus further explanatron is ormiticed.

4, Control System Design and iscussion

4.1 Problem Formulation
The state space model of the nonlinear serve sysiem
with Coulomb friction and dead-zone is given in egation
(2). The design specilications considerad are as (ollows;
1}  Steady state tracking criors should be zero for
arbitrary constant inputs.
2} Gain crossover frequency should be about 12 rad/s,
3) The maximum singular value of the sensitivily
transfer function matrix should be less than -20 dB
for all @ </!radfs for the good command

[ollowing and disturbance rejection.

4.2 LOG/H/LTE. Controller Design

A linear plani is requrred 10 apply the LQG/H,/LTR
method. For linear case, the Coulomb friction and
dead-zone arc no considered. Then the design plant
model dynamics are represented as follows:

x() = Ax{t) + Buir)

¥y =Cx(1) 59
where
o 7 a
A= 0 7&_ , B= M
flfffq Meq

and output matrix € is the same as thc mattces in
equation (2). The design plant medel is found to be
completely controllable [rom the npul z(r) and
completely observable through the output y(7) , and is
also a minimum phase planl. Therelore, the
LQG/MH./LTR controller can be designed with a
guarantee of (he good LTR. The target filter loop is
designed by matching the lugh frequency singular values.
Then the desjgn parameter L is chosen as Tollows:
L=a']1 of (40
To delermine the filter gain matrix H, the values of
1.02 and 0.00425 for g and ¥, respectively are chosen to
provide a crossover frequency of about 12 rad/s for the
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target (itter loop. Afier choosing £, i and y to satisfy the
desired target filter loop shaping, the filter gain matrix K
is calculaled from cquations (16) and (20). The resulting

filter gain mairix H is.

H =[282843 of 410

The LTR is atiempted with the nonlinem cheap
control  problem. The target filler loop is usually
recovered up to a decade beyond the crossover [tequency.
Tius level of recovery is obtained with a value of 10~
fer o, Then the control gain matrix G is calculated
[rom equations (17). {18) and (22) without the comrection
term (L7} as follows

G=[-227.07 —0.7641] (42)

Let us evaluate the periormance and stability
robusiness for the nonlinear plant with the LQG/H./LTR
controlier. For this purpose. the frequency responses are
checked for 3 different command inputs, which are
assumed as zero mean white noises lor the statistical
hinearization of nonlincar plant. The white noise
intensities of the selected mputs (V) ae Sx 707,
10% and 710'° which represent the small, medium and
large input cascs, respectively. Singular values of the
loop tramsfer [unction matix and target filler of the
nonlinear plant with the LQG/MH,/LTR controller are
shown in Fig. 4, and the experimental normalized step
responses of the nonlinear plant with the LQG/AIL/LTR
controller is shown in Fig. 5 and Fig. 6

100 ] T
80 [ - — V,=Te+10(TFL) ]
e - = W= fouli (TRL)
60 = - ¥, = Fee05 (TFL) |
N - == V= Tost0 TR
40 - - R = - VsTerBG(LTA)
fas] = 1Y, = e 05 (L TR
el —
P 20
2 L
2 o}— e
5 T
o
20—
= \\
40 |- - N
-G - S
_BO P IR L Tl
1E-3 ool 01 1 10 100 1000

Frequency (radisec)
Fig. 4 Singular values of the loop transfer [unction
matrix and laget filter loop of the nonlinear
plant with the LQG/H_/LTR controller
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02k
D,D 1 1. 1 1 1
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Fig. 5 Step responses of the LOG/L/LTR control
syslem; a case of the small reference inputs

{experiment)

The LOQG/H./LTR control system maintains the

robusiness  for magnitude and
but

requitements far small inputs. In the time response. there

stability any nput

direction, it does not meet the performance
are some steady state errors for ihe most of step inpuls.
Thiz is due to the effect of the Coulomb {riction and
dead-zone. However, as the sizc of the stop inputs is
larger. it 15 scen that the steady state errors are decreased.
This is the fact that the control forces of the case in a
lager step input are greater comparing the case of a small
step  input.  Thus, the
performance of the conirol system vary according to the
magnitde of the contral force. In addition, some
avershoot exists for large inputs due to the elastic of the

timing-bell. In this paper, lel this problem nst to be

the nonlinear eoflects on

treated.
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Therefore. the LQG/H./LTR controller cannot be
used for a large operating range. In order to improve the
performance. a nonlinear controller is required which can
capture the effect of the Coulomb friction and dead-zone
and in addition, adapt to changes in the magnitude and
direction of the command input.

4.3 Quasi-LQG/H./LTR Controller Design

The statistically linearized plant of equation (2) and
the selection of several operating points to cover an
operating range of interest are rcquired to apply the
Quasi-LOQG/H,/LTR method. The zero mean white noise
intensities of the noise inputs {V, ) are selected between
3x10° ~ 10" Results of singular values for 3 mput
cases (V,=5%10°, 10° and 10°) are presented.
The gains (filter, control and DF) and the siationary
statistics (controller states and filter innovalions) are
stored for all linear designs. The filter gains are the same
as the LQG/H /LTR case. Since (¢ are almost constant
for any noise intensity V., then G can be chosen as
[ollows:

G =[-227.063 0.76385] (43)

The nonlinearities of F g senf{xy and Dz are
functions of inputs z,{t) and w(t) respectively. The DF
gains { Ny and N, ) that are implemneted in the
controller and the standard deviations of the controller
The desired nonlinear
[unctions  f..(f) and  f; () for Coulomb [rction and
obtained via JTRIDF
techniques, which are shown m Fig. 7. The structure of
the Quasi-LQG/H,/LTR of the timing-belt driving servo
system 1s presented in Fig. 8.

states are given in Table 2.

dead-zone, respectively are

Table 2 DF gains and standard deviations of the
compensator states at all operating points

¥ N £ Ng. -3 Ty
swgo’ 008387 099545 306897 523.422
6% 0.05716 099954 596184 622.927
Sy gpf 002362 0.99969  14.4285 G532.099
107 0.0163% 0.99974 47.6380 [108.58
108 0.00503  0.99985 152.618 1971.66
10° 0.00158 0.99991 216221 3506.63
Jpi? 0.0004% 099955 685784 623528

3l

Singular values of the loop fransfer function matrix
and target filter of the nonlinear plant with the Quasi-
LQG/H./LTR controller are shown in Fig. 9.

Jeaily Jul)

042714

a7
w12 > i

02517

=
=

R T

Fig. 7 Desited nonlinear functions wvia the IRIDF
techniques

The simulation results of the normalized slel;
responscs  of the nonlincar plant with the Quasi-
LQG/H./LTR controllet are shown in Fig, 10 and Fig. 11,
and the experimental results are shown in Fig. 12 and Fig.
13. From the simulation and experimental results. il is
found that the Quast-LQG/H./LTE control sysiem 1s
insensiive to the magmmde and direction of the mpwt. In
addition, no steady state error exists for constant inpuis
so that the precise position control for the timing-belt
driving servo syslem can be done. But unbke to
simulation resulls, 1 experimenial resulis the small
oversheot and delay ol the

;
AampiM ey -+— <
;
1

L

CogfMu

e

Fig. 8 The structures of the Quasi-LQG/H.,/LTR
controller the timing-belt driving servo system
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Fig. 9 Singular values of the loop transfer function
matrix and target [filier loop of the Quasi-
LQG/MH./LTR control system
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Fig. 13 Step responses of the Quasi-LQG/H./LTR
control system; a case of the large refcrence
inpuls (cxperiment)

rising time can be seen for the large magnitude of the
tnputs like the LQG/H /TR comtrol system due to
elastic elfect of the aming-belt,

4.4 Discussion

In the frequency response, the LQG/AHL/ATR control
systemm meets the design specifications for a small
operating range, but the Quasi-LQG/H./LTR conirol
system meets them Jor the enlire opetating range. And in
the time response, the LQG/H../LTR control system as
steady state crrors for constant inputs even il the systcm
has free integrators, because the LQG/H,./LTR controller
cannot adapt to the elfect ol the Coulomb friction and
dead-zone which cannot be capfured in the linear model.
In addition, the systcm responses arc scnsitive to the
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mput the Quasi-LQG/H./LTR
control system meets the design specifications for all the

direction. However,
operating range. The system responses are insensitive to
the magnitude and direction of the command input, The
response has na steady state error and has fasi setiling
tume for all the operating range. This is so because the
Quasi-LQG/H, /LTR controller reflects in its madel and,
thorefore, can adapt to the effect of the Coulomb friction
and dead-zone,

5. Conclusion

A Quasi-LQG/H/LTR  design method for a
nonlinear servo system with Coulomb iriction and dead-
zone has been presented. The method is essentially an
integration of statistical linearization. loop shaping and
loop transfer recovery techniques. By using siatistical
linearization techniques. nonlinear effects arc considered
in the design of pomkinear controllers that adapt to
changes 1n input magnitude lor nonlinear systems with
hard nonlinearities such as Coulomb [riction. backlash
In
techniques the performance requirements and stability

and dead-zone, addition, wusing loop-shaping
can address robustness simultaneously.

Tha LTR conditions for the staustically hinearized
system were discussed. It 18 [ound that the LTR
conditions for the statistically linearized system are
basically the same as in the linear case. The only
difference is that the nonlinear cheap control problem
includes the correclion term in the medified Riceati
equalion. Fortunately, the comrection tcrm is  not
dominant in the good LTR. Therefore. it can be neglected
in this situation. Then, the madified Riccati equation has
the

Therefore, the required computation becomes much

the same form as standard Riccati equation.
stmpler by neglecting the corrcction term.

Finally, the Quasi-LOG/TL/LTR method is applied to
a uming-belt driving servo system with Coulomb friction
and dead-zone, Tt is venfied that the Quasi-LQG/H, /LTR
controller is insensitive to the magnitude and direction of
the command input. Thos, the Quasi-LQG/H/LTR
method can be suggested to design controllers for the
with hard
nonlinearities to meet the performance requirements and

nomlinear  multivariable servo  systems
to maintain the stability robustness for a large operating

range. Therefore, we can suggest that the Quasi-

LQG/H_/LTR contrel method is suitable for the precise
position contrel of a hard nontincar servomechanism that
afien appears 1o astomatic plants.
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