• Title/Summary/Keyword: Injectable delivery system

Search Result 18, Processing Time 0.019 seconds

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

Preparation and Characterization of Poly(D,L-lactic acid) Microspheres Containing Alprazolam (Alprazolam함유 poly(D,L-lactic acid) Microsphere의 제조 및 평가)

  • Yong, Chul-Soon;Kwon, Mi-Ra;Park, Sae-Hae;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.13-22
    • /
    • 1996
  • Poly(D,L-lactic acid) (PLA) microspheres containing alprazolam(APZ) were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of APZ to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like APZ crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of APZ for long-acting injectable delivery system in vitro, which would aid in predicting in vitro release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.

  • PDF

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Development of Poly(D,L-lactic acid) Microspheres Containing Lorazepam (로라제팜을 함유한 poly(D,L-lactic acid) 마이크로스피어 개발)

  • Choi, Han-Gon;Yoo, Bong-Kyu;Rhee, Jong-Dal;Kim, Jung-Ae;Kwon, Tae-Hyub;Woo, Jong-Soo;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.175-184
    • /
    • 2006
  • Poly(D,L-lacic acid)(PLA) microshperes containing loazepam were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of lorazepam to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like lorazepam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of lorazepam for long-acting injectable delivery system in vitro, which would aid in Predicting in vivo release Profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.

Injectable Gel Type Formulation of Hydrated Egg Phosphatidylcholine and Hyaluronate for Local Drug Delivery

  • Kim, Sang-Gyun;Chung, Hesson;Lee, In-Hyun;Kang, Seung-Back;Kwon, Ick-Chan;Sung, Ha-Chin;Jeong, Seo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.165-172
    • /
    • 2002
  • Injectable gel composed of egg phosphatidylcholine (egg PC), hyaluronate (HA) and water was formulated for local drug delivery. The lamellar liquid crystalline structure of the egg PC/water system did not change by adding HA in the formulation. However, egg PC/HA/water gel was more resistant to erosion than the egg PC/water gel. The egg PC/HA/water and egg PC/water gels containing model drugs, tetracycline and sudan IV were prepared to perform in vitro and in vivo drug release experiments. In vitro release of tetracycline was sustained in the gel type formulations. The release rate of hydrophobic sudan IV was extremely slow. More than 99% of sudan IV remained inside the gel after 5 days. In vivo release of drugs from the air pouch model in Balb/c mice shows that lipophilic sudan IV remained for more than 10 days whereas tetracycline remained for 1 day in the pouch. The compatibility of the gels was also examined by histopathology. The gels did not cause any adverse inflammatory effect in the air pouch.

Preparation and Evaluation of Meloxicam-loaded Poly(D,L-lactic acid) Microspheres (멜록시캄 함유 poly (D,L-lactic acid) 미소립자의 제조 및 평가)

  • Im, Jong-Seob;Oh, Dong-Hoon;Li, Dong-Xun;Sung, Jung-Hoon;Yoo, Bong-Kyu;Kim, Jung-Ae;Woo, Jong-Soo;Lee, Yong-Bok;Kim, Se-Mi;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • Meloxicam-loaded microspheres were prepared with poly(D,L-lactic acid)(PLA) by a solvent-emulsion evaporation method. The morphology, particle size, drug loading capacity, drug entrapment efficiency (EE) and release patterns of drug were investigated in vitro. Various batches of micro spheres with different size and drug content were obtained by changing the ratio of meloxicam to $PLA^{\circ}{\AE}s$ with different molecular weight, PLA concentration in the dispersed phase and stirring rate. Meloxicam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. Microspheres prepared with smaller molecular weight produced faster drug release rate. The release rate of meloxicam for long-acting injectable delivery system in vitro, which would aid in predicting in vivo release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres. Blood concentration-time profile of meloxicam after intramuscular injection of meloxicam-loaded microspheres in rabbits showed possibility of long term application of this system in clinical settings.

Preparation of Glutamic Acid-Leucine Copolymer Containing Indomethacin for Controlled Delivery

  • Yeom, Young-Il;Kim, Hyun-Pyo;Kim, Hack-Joo;Byun, Si-Myung;Kim, Nam-Deuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.213-217
    • /
    • 1986
  • A series of copolypeptides of glutamic acid and leucine have been synthesized by N-carboxy-${\alpha}$-amino acid anhydride procedure and cast to form injectable microparticulate monolithic devices in which indomethacin was physically dispersed. With these devices, various release properties and possible clinical application were studied. The release rate of the drug had a close relationship with the monomer composition of the copolymer matrix as well as the environmental pH condition. The monolithic device of glutamic acid/leucine = 50/50 was found to be the most promising one as a ploymeric delivery system of indomethacin. The intrinsic viscosity of this copolymer was 4.35 dl/g and the release rate was 18.5${\mu}g/g/day$.

Anti-tumour Efficiency of Chitosan Hydrogel Containing Anionic Liposomes as a Depot System (음이온성 리포솜이 결합된 키토산 겔의 항암효과)

  • Choi, Min-Soo;Han, Hee-Dong;Kim, Tae-Woo;Song, Chung-Kil;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Depot system for local drug delivery using chitosan hydrogel has been developed to enhance the therapeutic efficacy and to prevent the severe side effect in whole body. Thus, we have prepared an injectable chitosan hydrogel containing liposomes to treat cancers clinically. Anionic liposomes incorporated to improve sustained release efficiency within chitosan hydrogel. The chitosan solution containing liposomes was designed to form a hydrogel complex at body temperature. The released behavior of doxorubicin from liposomes in chitosan hydrogel showed sustained-release caused by diffusion of doxorubicin from temperature responsive liposome into chitosan hydrogel. The chitosan hydorgel containing liposomes enhanced the therapeutic potency for the solid tumor in vivo system. Our results indicate that the liposomes in chitosan hydrogel represent a depot system for local drug delivery.

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

Comparative Study of Spray Drying Method and Solvent Evaporation Method for Preparation of Biodegradable Microspheres Containing Nicotine and Triamcinolone Acetonide (니코틴과 트리암시놀론 아세토니드를 함유하는 생분해성 마이크로스피어의 제조시 분무건조법과 용매증발법의 비교)

  • Park, Sun-Young;Cho, Mi-Hyun;Lee, Jeong-Hwa;Kim, Dong-Woo;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.257-263
    • /
    • 2001
  • The microspheres have been developed as a new drug delivery system. Although many particulate drug carriers, such as liposome, niosome and emulsion, have been introduced, injectable and biodegradable microspheres appears to be a particularly ideal delivery system because the local anesthesia is not necessary for the insertion of large implants and for the removal of the device after the drug release is finished. Biodegradable microspheres with nicotine and triamcinolone acetonide are prepared and evaluated. As biodegradible polymers, PLA (M.W. 15,000, PLA-0015), PLGA (M.W. 17,000, RG 502) and PLGA (M.W. 8,600, RG 502H) are used. This study attempted to prepare and evaluate the nicotine and triamcinolone acetonide-incorporated microspheres, which were prepared by two methods, solvent-evaporation and spray-drying methods. The microspheres, as a disperse system for injections, were evaluated by particle size, size distribution, entrapment efficiency, and in vitro drug release patterns. The differences of preparation method, partition coefficient, types of polymer, and preparation conditions of microspheres influence the particle size, entrapment efficiency, and in vitro drug release patterns.

  • PDF