• Title/Summary/Keyword: Initial imperfection

Search Result 185, Processing Time 0.021 seconds

A Study on Unstable Phenomenon of Space Truss Structures Considering Initial Imperfection (트러스형 공간구조물의 초기 불완전을 고려한 불안정 현상에 관한 연구)

  • Lee, Jin-Hyouk;Baik, Tai-Soon;Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.63-71
    • /
    • 2004
  • The structural space is gradually wide and is wanting agreeable environment by the requirement and necessity of people who lives modem stage. The building coincides with such requirements and is the high rise building actual circumstances which is doing ultra-large. The confirmed report of the technology to organize great merit is becoming currently considerably important issue in constructing a building field. Thus, this paper examine closely for nonlinear unstable taking a picture uneasiness height of prosperity considering to initial imperfection by a numerical method with a space frame structure of discrete system in large space structure. Based on previous investigation method, this paper induce nodal stiffness matrix of solid truss elements considering geometrical nonlinear using finite element method. In this paper, three types of space structure considered; i) 1-free node space structure, ii) 2-free node space structure, iii) multi-free node space structure. It apply the above examples to a nonlinear program, next, grasp the characteristic of an unstable conduct and the result was a clearing low.

  • PDF

Bifurcation Criterion in Eccentrically Compressed Rectangular Tubes (편심압축하중을 받는 사각튜브의 분기세장비)

  • 김천욱;한병기;정창현;김치균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.270-278
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Overall buckling stress and bifurcation criterion (slenderness ration)are investigated. modified secant formula(MSF) is proposed to decide overall buckling stress. The bifurcation criterion which can distinguish between the local and overall buckling mode shapes is suggest by equating the local and overall buckling stresses. Additionally the effect of initial imperfection on bifurcation criterion is investigated.

  • PDF

Initial Imperfection Sencitivity in Stiffened Plates (보강판의 초기결함 민감성 연구)

  • 김천욱;원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.264-273
    • /
    • 1984
  • 초기경향이 있는 보강평판의 비선형 운동 방정식을 Galerkin method에 의하여 유도하였다. Runge Kutta method를 사용하여 step-load를 받고 있는 보강평판의 동적 좌굴문제의 수치해를 구하였다. 정적 좌굴실험에 의하여 좌굴하중을 결정함에 있어 동적 해석법을 응용할 수 있음을 입증하였으며, step-load를 받는 보강평판의 동적 좌굴해석으로 정적좌굴의 초기결함 민감성을 해 석하였다. 보강평판의 초기결함민강성은 평판보다 훨씬 낮으며 보강재의 편심비가 높을수록 민감 성은 둔화된다.

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening

  • Ma, Yihao;Cheng, Xiaoquan;Wang, Zhaodi;Guo, Xin;Zhang, Jie;Xu, Yahong
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • A 1/3 composite cylindrical shell with a central rectangular opening was axially compressed experimentally, and its critical buckling load and displacement, and strains were measured. A finite element model (FEM) of the shell with Hashin failure criteria was established to analyze its buckling and post-buckling behaviors by nonlinear Newton-Raphson method. The geometric imperfection sensitivity and the effect of side supported conditions of the shell were investigated. It was found that the Newton-Raphson method can be used to analyze the buckling and post-buckling behaviors of the shell. The shell is not sensitive to initial geometric imperfection. And the support design of the shell by side stiffeners is a good way to obtain the critical buckling load and simplify the experimental fixture.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

Nonlinear Dynamic Characteristics of Antisymmetric Laminated Shells (역대칭 적층쉘의 비선형 동적 특성에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.691-700
    • /
    • 1998
  • Based on Von Karman-Donnell kinematic assumptions for laminated shells, the nonlinear vibration behaviour of antisymmetrically or asymmetrically laminated cross-ply circular cylindrical shells with clamped and simply-supported ends are studied by a multi-mode approach. A equation is formulated and satisfies the associated compatibility equation and all boundary conditions. The displacement function is assumed to take the form of the lowest linear vibration mode and to satisfy continuity of the circumferential displacement. The nonlinear vibration equation is derived by the Galerkin's method. And nonlinear frequency is obtained by using the harmonic balance method as a function of lamination parameters, material constants, aspect ratio and amplitude of vibration. The effect of initial imperfection is also included. Results of the non-linear vibration are presented for different amplitudes of initial imperfection and four sets of boundary conditions. Present results are compared well with existing analysis results.

  • PDF

Buckling Strength of Cylindrical Shell Subjected to Axial Loads (축하중을 받는 원통형 쉘의 좌굴강도)

  • Kim, Seung Eock;Choi, Dong Ho;Lee, Dong Won;Kim, Chang Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.191-200
    • /
    • 2001
  • This paper presents buckling analysis of the cylindrical shell subjected to axial loads using numerical method. The modeling method, appropriate element type, and number of element are recommended by comparing with analytical solution. Based on the parametric study, buckling stress decreases significantly as the diameter-thickness ratio increases. These results are different from those obtained from buckling analysis of columns. The number of buckling half-wave in circumferential direction decreases as the diameter-height ratio increases. Buckling stress increases 1~2% as the thickness of base plate increases. Therefore the effect of base plate on buckling strength for cylindrical shell can be disregarded. Buckling stress significantly decreases as the amplitude of initial geometric imperfection used for calculating buckling stress is developed and it shows a good agreement with numerical results.

  • PDF

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Experimental Study on the Ultimate Strength of Composite Cylinder under Hydrostatic Pressure (수압을 받는 복합재 원통의 최종강도 실험 연구)

  • Cho, Sang-Rai;Kim, Hyun-Su;Koo, Jeong-Bon;Cho, Jong-Rae;Kwon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.154-157
    • /
    • 2006
  • Composite material is one of the strong candidates for deep see pressure hulls. Research regarding composite unstiffened or stiffened cylinders subjected to hydrostatic pressure has a couple of decades history abroad but domestic research is very new. Experimental investigations seem necessary to understand their structural behavior not only up to the ultimate limit state but in post-ultimate regime. Those experimental information will be very helpful to develop any theoretical methods or to substantiate any commercial numerical packages for structural analyses. In this study, ultimate strength tests on seven composite cylinders subjected to hydrostatic pressure are reported, which includes the fabrication method of models, material properties of the material, initial shape imperfection measurements, test procedure and strain and axial shortening measurements during the tests. The ultimate strengths of the models were compared with those of numerical analyses. The numerical predictions are higher than the test results. It is necessary to improve the accuracy of the numerical predictions.

  • PDF