264 Transactions of the Korean Society of Mechanical Engineers, Vol. 8, No. 3, pp.264~273, 1984.

< QOriginal>
Initial Imperfection Sensitivity in Stiffened Plates

Chon Wook Kim* and Chong Jin Won**

(Received February 6, 1984)

RS MR SR FiR
& X B-x # #

£ %

DgiEEe) o WEFHS JeM EHHAER S Galerkin method o] ¢ 5t} fE3kg . Runge-
Kutta method & A}83ke] step-load & Wz gl& WIEFRS B HERMES BUEME Fahgish
i WERR o sl HENES AT Jol B MES 24T & 4ee d3sgen,
step-load = Whe WEEAHS By WEMN O BNSmE MIRE MEES A W

Fizel oigE SRt FiRuct €4 dor WM Fokot 2455 Sk Skt

1. Introduction

In general the plates which are used in various
structural members are reinforced whith stiffeners.
Increasingly the trend in steel structures has been
to use thin-walled structures composed of assemblages
of thin plates, such as box girder in cranes or brid-
ges, oil rig platforms, etc., permitting efficient use
of materials. However, as the designs are optimized
from the stand-point of buckling, it is apparent that
the mechanics of buckling behaviour of these stru-
ctural forms becomes increasingly complicated.

The earliest solution of a buckling problem of flat
plates was given by Bryan® in 18%1. He applied
the energy method to the analysis for a rectangular
plate which is simply-supported on all its edges and
acted upon two opposite sides by a uniformly distri-

buted compressive load in the midplane of the plate.
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This energy methcd has been used in obtaining
approximate solutions for stiffened plates by Timo-
shenko®® in 1913.

The buckling theory of plates is one of the classical
theories in solid mechanics. The main reason inves-
tigating the buckling phenomena of plates is the
discrepancy between the theory and experiment.
Generally, experimental buckling loads have been
much lower than theoretical values. For many years,
it has been speculated that these discrepancies might
be attributed primarily to very small initial imper-
fections in plate geometry.

In the shell theory the discrepancy between the
theory and the experiment can be minimized by
testing almost accurate specimens. Tennyson®®
describes the ccnstruction and testing in axial
compression of five accurately made cylindrical
shells 8 to 10 in. in diameter. The fact that very
high values of the buckling load were obtained when
initial imperfections were carefully minimized
confirms that the initial imperfection is the major
reason for the reduction in critical load.

The initial imperfection sensitivity of the plate is
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generally less sensitive than the cylindrical shell.
However, in the case of plates it is known that the
residual stresses due to welding and the initial
imperfection result in the reduction of buckling
strength of the plates under compression®%?, The
initial imperfection sensitivity of the stiffened plate
can be expected less sensitive than the flat plate,
since the stiffeners act as columns under compressive
loads.
Ekstrom®

simply supported rectangular orthotropic plate, with

analyzed the elastic buckling of a

initial imperfections, under a rapidly applied com-
pressive load. He used the large deflection plate
equations to study inertial effects in the postbuckling
phase. In his study initial imperfections decrease the
critical loads of the orthotropic plates.

In this paper the effect of initial imperfections is
analyzed by the dynamic buckling mode. The stiffe-
ners are located symmetrically to the plate and
parralled to the compressive load. Experiment is also
conducted to investigate the relation between the
dynamic buckling mode and the static buckling.
The initial imperfection sensitivity is analyzed by
numerical solution of the nonlinear dynamic buckling

equation.

2. Buckling Theory of Stiffened Plates

2.1. Governing Equations

Generally, the nonlinear equation of motion of the
plate is based on the assumptions which are used in
the Karman type theory. In deriving governing
equations of stiffened plates, additional assumptions
are established;

(1) Application of the large deflection plate theory
is capable.

(2) In-plane inertia terms are lower order of impor-
tance compared to the normal inertia.

(3) The plate is symmetrically stiffened by equally
spaced stiffeners.

(4) The entire plate including the stiffeners is acti-
vated in the buckling, that is, local buckling
are not considered.

(5) The shear membrane force is carried entirely
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by the skin and the torsional rigidity of the
stiffeners cross section are added to that of the
plate.

(6) Plane stress condition is assurned before buckling
The stiffeners have stiffness only in their plane.
The stiffness of the stiffeners perpendicular to
their plane is neglected.

Fig.1 shows the plate with the stiffened geometry
and the coordinate system. Fig.2 shows the stress
resultants and moments acting on the stiffened plate

element.

Fig. 2 Stress resultants and moments

Normal strains e, ¢, and shear strain 7, in the
stiffened plate can be represented as

Ex=6:"4 2K

&=¢&"+2kK,

Ter =7 —22k, ¢))
where &% ¢,° and 7%, denote plane strains on the
middle surface of the plate and &, £y, £, denote the
change of curvatures and twist.

Relations between stresses and strains can be re-

presented as, for the plate
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E
Oe= Tj(e,-i—vs,)

0= (e hves) @
Txy:_i_—rzy
2(1+)
where E and v denote longitudinal elastic constant
and Poisson’s ratio, respectively,
and for stiffeners
0. =Etx
oy =E,e, ®
Txy =0
where E. and E, denote longitudinal elastic constants
of longitudinal and transverse stiffeners, respectively.
Using the resultant stresses and moments the cons-
titutive equations for the stiffened plate can be
written in the form

N. Ci C 0 0 0 0 Ex

N, C; Cz 0 0 0 0 &y

ny _ 0 0 C33 0 0 0 Ty (4)
M, 0 0 0 CuCs0 [
My 0 0 0 C45 Css 0 Ky
Mxy 0 0 0 0 0 Ces Kxy

where the stiffeness parameters are

C;I:C—F% CIZZVC
sz=c+~——E’5:h’ C33:____(1*‘2V)C

_ ER ___FEm

% b=t ®
Cu=D+ el Cis=vD
Css:D—F——-‘E;;’I’

—(1_ 1 (GJ . Gy
CGG_(l ”>D+ 2 <——dx +T)

b
]x= kd X, 3—pd
= [(h+h Y—h ]

_ hbd (L 384 he he
Je=te (1B rann T ) for £ <)

— b, 3__z8
L= Gt y—w)

_ hD (. 384 zhy n,
= (1= 2o tan I )(for b< L )

In the above parameters J. and J, are torsional
constants depending on the values of the aspect ratio
of the longitudinal and transverse stiffeners cross
section, respectively®,

In order to investigate the effect of initial imper-
fections to the critical load for stiffened plates, we
introduce the second-order strain-displacement rela-

tions

e,ozu,,—}-%w, zz"_‘lz“(wm X)z

Eyozvyy‘i’%wnz‘_—l?l—(wmy)z (6)

7%y =ty 0,2+ W, W,y — W, xWo, y
where # and v denote the displacements in x and y
directions, respectively. w (x,y,f) is the total displ-
acement normal to the middle surface and wo(x,y)
is the initial displacement normal to the middle
surface. The changes of curvature are represented as

K== — 52y K3=—Dy5y, Kry=W,xs &)
where
W=w-—1,

The equation of motion in the direction normal to
the middle plane yields in the form of resultant
moments

Moy zs—2Mey ey + My, 5y +(Net), co+ 2Nyt 2,
+ N, 5y) =pht, u @

Neglecting tangential inertias, equilibrium equa-
tions in x and y directions are identically satisfied
by introducing stress function F(x,y,t) which is
defined as

N.=hF,s5, Ny=hF, .., Noy=—hF,., 1C)]

Using Egs. (1), (@), (6), (7, (8) and (9), the

equation of motion can now be written as
C a0, 122+ 2(Cas+Co6) Dy xyy+Cos, 553y
=R(F, 52— 2F  ayt, g+ F'y 2, 55— pw,0)  (10)
The compatibility condition for the large deflection
theory is given as ’
%, 55 €% mx— 7 Cyy my = (W 25) P — W, 2520, 5
— (Woy 2y ) +Wo,xxWoy 5y an
From Egs. (4) and (9), Eq. (11) vields

_ Culn—Ci®
CuCh—Cr* [Cu F’“n_‘_( Cas )

F!"")”_!—CZZFINYJ’Y]:(wix’)z_w)x" w))’)’

“(woyxy)z‘f‘wo,xxWwa (12)
Then, Egs. (10) and (12) are governing equations
for the symmetrically stiffened plate.

2.2. Buckling Equation
In case that all the edges of the rectangular stiff-
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ened plate are simply-supported and subject to the
in-plane load in the x direction, boundary conditions
are
W=Wo=W,zx=Wy,xx=0 at x=0 and x=a
W=Wy=W,»y=Wo,5»=0 at y=0 and y=>b (13)
The deflection function for the stiffened plate
which satisfies Eq. (13) will be assumed to be a

single mode.

w(x, 3, ) :f(t)sinigi sin l’gy_ 14

where f(f) is the time-varying amplitude of w and
m and #» are the integer numbers of half waves in
the x and y directions, respectively,

In analyzing the effects of initial imperfections,
the initial and final shapes are usually assumed to
be of the same basic form. Thus, w,(x,) is taken

as
wo(x, ¥) =1, sin% sin me’— (15)

where f, is the amplitude of the initial imperfection.
If there is no restraint in the y direction at edges
y=0 and y=5, F must satisfy
at x=0 and x=a,

1 (*ar a0 1 (7 _
B SNty = Pty =—p
at y=0 and y=b, (16)
. g Ndx=—g Fendx=0

where p is defined as the average value of the
compressive stress in the x direction.

Substituting Eqs. (14) and (15) into the compa-
tibility condition, Eq. (12), one obtains a differential
equation relating the stress function to the assumed
deflection function. ‘

h [ch, xxxx-%-(“——cuczz_cuz

Cuczz—cuz C33
2
—2012>Fyxxyy+CZZF7>'yy ] “;- a:l;zf‘
. 2mnx & 2nmy 2_
X (co S Feos= )(f ) an

A solution of Eq. (17) which satisfies the conditions
given by Eq. (16) is

— CuCun—C.? [ a’n? 2MTX
F(x,,6)= T (bzmz cos <72
24292
+ L s B N prfny L ()

Substituting Egs. (14), (15) and (18) into Eq.
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(10), the equation of motion yields
{ axf Cym* 2(Cis+Cos)m*n?
dt? hp[ a* a?b?
Cssn ](f f)— znzpf
4(Cllczz—cnz) #t mrx
8hp < Cud* €08 a
. mt 2nzy 2 f2
g cos BN f- ) )
x sin "X &in "‘Zy =0 19)

Applying Galerkin’s method, we obtain a nonlinear
equation of motion as follows:
af [ Cum* + 2(Cis+Cos)m*n?
4t ph at a’h?

+ L |5 (f=fo - TEL f

(C 1sz C122)7Z'4 ﬂ'l4 nt
: 1604 < C.at + Cub4>
Xf(F2=FH=0 (20)

where m and # are odd integer numbers.

Omitting d*f/dt* and nonlinear terms and setting
fo=0, the static critical buckling load of the perfect
stiffened plate can be obtained as

F(eu) +caren () (5)
ool (2
where P=pbh

From Eq. (21),
buckling load P.; is given as

@n

with #=1, the static critical

055 a 2
+& ()] @)
and the least critical load
2
Pdain=T5—[(CuCs)*+CustCar) (2

occurs when (Css/Cus)2(a/b) is an integer.

In order to generalize the solution of Eq. (20),
the following nondimensional parameters are intro-
duced

(=L, G=o, p=asp

h
_ 7% [Cy _ P
A oh’ r= P
R= Cis+Ces , Ry= Css

C“. CAA ’
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R3= (Cuczz—clzz)hz R4___ CZZ (24)
22044 ’ cll
With these substitution, and for #=1, Eq. (20)
becomes
B+ (2R R (C—Co)
— (M 2R B+ RfHIT
+B (o + REHE—LHT=0 (25)

Since R,=R,=R,=1 and R;=12(1—v*) for the
unstiffened plate, Eq. (25) becomes for isotropic
plates

ax
dzc?

+EDHE~ L) —(m*+5 ¢

+ 32D (w4 p@ D=0 (26)

3. Numerical Examples

The dynamic buckling load of the stiffened plate
is limited to the step-load which is closely related
to the static load, since the main purpose of this
study is the investigation of the effect of initial
imperfections.

As shown in Fig. 3, the loading condition in the
present study is

I'=9 at t=0

I'=ry at 720 @n

r

I,

T
Fig. 3 Shape of loading
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Shapes and dimensions of the specimens for
numerical examples

Fig. 4

In order to investigate the effect of eccentricity
of stiffeners, 4 kinds of stiffening types are selected
as numerical examples and the dynamic buckling of
isotropic plates is also analyzed. Properties of the
plates in numerical examples are shown in Table 1
and the geometries of the plates are shown in Fig.4.

Eq. (25) is numerically solved by the fourth order
Runge-Kutta method. Numerical results are given
for the longitudinally stiffened plate with 8=1.25 in
order to compare with static buckling experiments.
Initial deflections {, which are used in the numerical
analysis are 0.0001 for perfect plates and 0.01,
0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 for the plates
with initial deflections. Initial conditions of numerical
integrations are {=C, and d{/dc=0 at z=(.

When it is assumed that the mode type in the
linear buckling analysis is pertinent to that in the
nonlinear buckling analysis, the value of m which
give the minimum critical buckling load is selected
by the value which minimize the critical buckling
load.

Table 1 Properties of the plates

Specimen | (my | “0Sns) | (om0 | ooy | oy | e Ay | e ey | ¥
S1 0.8 | 8(4x2) 7.147 2,248 20 7x10% 7x10° 0.33
52 0.8 | 8(2.667%3)| 12.082 4, 5996 20 ” " ”
S3 0.8 | 8(2x4) 18. 347 7.598 20 ” " ”
S4 0.8 | 8(1x8) 56. 747 2,248 20 ” ” ”
I1 0.8 0 0 0 — ” ” ”
12 1.2 0 0 0 — ” ” ”
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Fig. 5 Amplitude-load curve for a stiffened plate under ster-load
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Fig. 6 Linear response curves of the stiffened plate under step-load

(P:)min, which is given as Eq. (23), exists only amplitude-load curves which are plotted by the
in the case that value of (Cs5/Cs)? (a/B) is an numerical results Fig. 5 shows a typical amplitude-

integer and it can not be generally applied. For 8= load curve of a stiffened plate. From the nonlinear
1. 25, the value of m which gives (P:)min in the characteristics of the deflection of the plate, we can
buckling of stiffened plates and isotropic plates is 1. find an inflection point on the amplitude-load curve.

Dynamic buckling loads are obtained from the The load corresponding to this inflection point is
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defined as the dynamic buckling load Pe:.

In order to examine the propriety of this dynamic
buckling load, only the linear terms in Eq. (25) are
plotted as shown in Fig. 6. The amplitude of the
linear response curve becomes infinite at the dynamic

Table 3. Using these data the nondimensional buc-
kling loads vs initial imperfections are plotted as
shown in Fig. 7.

Table 8 Critical values of imperfect stiffened and
unstiffened plates under axial step-load

buckling load. This is the same concept as the Euler 7
theory for the buckling of a column. Specimen & Pakgf) | (PP
In Table 2, static buckling loads obtained by the o1 265, 04 0,975
lmeiarbthioTy (i.e., classwald!')uckh'ng t%leory), d?fn- 0. 22 955. 53 0. 940
amic buckling loads, and nondimensionalized buckling 0. 40 299.7 0. 845
loads of the stiffened and isotropic plates are shown. S1 0. 60 202.52 0.745
Initial imperfections were taken as {,=0.01, 0.05, 0. 80 173.98 0. 640
0.1, 0.2, 0.4, 0.6, 0.8 and 1.0, and dynamic buc- 1.00 144. 08 0.530
Kii . . .
ing loads for all kinds of specimens are shown in 0.10 382, 39 0.985
. . 0.20 368.8 0. 950
Table 2 Critical values of perfect stiffened and
. . 0.40 341.62 0. 880
unstiffened plates under axial step-load S2
0.60 308.63 0.795
Specimen | o | Pa(kgf)|P.(kgf )] I.. 0. 80 269.81 0.695
s1 0.0 | 27184 | 273.2 1.005 1.00 229.04 0.590
S2 ” 388. 21 390.15 1. 005 0.10 530.73 0.990
S3 4 536. 09 538.77 1. 005 0.20 520.0 0.970
S4 ” 1185.64 | 1191.57 1. 005 g3 0.40 490. 52 0.915
Il ” 115. 85 116. 43 1. 005 0. 60 450.31 0. 840
12 ” 390.98 392.93 1. 005 0.80 412.79 0.770
1.0
st
0.8 | a2
h
11=12
0.6
ol
0. |
0.2
0.0 1 1 Il L — y 1 L
0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0
%

Fig. 7 Effect of initial imperfections to the dynamic buckling loads of stiffened and unstiffened plates

under spep-load
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| 100 | 36454 | 0.680

| 0w | 0.995

0.20 | 1161.93 0. 980

g | 040 | 1145 0.940
060 103522 0.820

0.80 | 1012.72 0.835

1.00 966. 3 0.815

0.160 | 11L8 0.965

0.20 | 10427 0. 900

. 0.40 86. 31 0.745
0. 60 68.35 0.590

| 0.8 46.92 0.405

| 100 27.22 0.23

0.10 377.3 0.965

0.20 351.88 0.900

. 0.40 | 2191.88 0.745
0. 60 230. 68 0.590

0.80 158. 35 0.405

1.00 91.88 0.235

4. Experiments

4.1. Specimens

Specimens are made by aluminium plates(A1050P),

Stiffeners are joired on the plate with a strong
adhesive (Araidite). The elastic properties of the
specimen are measured with the electric universal
testing machine and the values of measurement are
found as E=7000 kg f/mm? and »=0. 33.

S2 and S3 are
selected for experiment among 6 kinds of specimens

Four kinds of specimens, 12, Si,

Fig. 8 Photo of stiffened and unstiffened plate spe-
cimens

which are shown in Fig. 4.

In order to investigate the effects of initial imper-
fections on the buckling load, 4~6 kinds of initially
imperfect specimens for each specimen are manufa-
ctured. In order to make initially imperfect specimens
satisfy the initial deflection function as Eq. (15),
the buckled specimens are used.

4.2. Experimental Apparatus and Experi-
mental Procedure
As shown in Fig. 9, compressive loads are applied
by the hydraulic universal testing machine (Shima-
dzu, RH-30) and measurements of compressive loads
were carried out with a load cell, a dynamic strain
amplifier (6ch.) and a recorder.

1| -

I ]

© 2
@
o 21 5 |
1 o o P - @ @
&= B i‘ —
FL — [ B
I g |
@ Specimen
@ UT.M.
® Load cell
@ Displacement transducer
® Dynamic strain amplifier
® Recorder
@ Simply-supported test-rig
Fig. 9 Schematic diagram of the experimental
apparatus
I
&

1

( Pcr) exp

&

{(n:n)

Fig. 10 Static buckling load
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Applied loads and deflections of the center of the
plate are recorded and calibrated to be converted
into real values of loads and deflections. These loads
and deflections are plotted by the Southwell method!®
and critical buckling loads are calculated. In Fig. 10
the Southwell method is shown and the straight line
is obtained from plotting data by the least square

method.

4.3. Experimental Results

In Fig. 11, an example of determination of the
buckling load by the Southwell method is shown.
Experimental results for the stiffened and isotropic

plates are shown in Table 4.

(x 1)-3) E
0.5r 51
=001 [7=1.0

0.4 F

d/p (om/ket)
[=]
&

0.2 (pcr)e’(p

0.0 o1 =
&(rn)

Fig. 11 Static buckling load of specimen
5. Discussion

5.1. Dynamic Bucking Load

It is difficult to study the initial imperfection for
a real structure by the static analysis. Since the
simulation by the computer is possible and the nu-
merical analysis can be applied in the dynamic
analysis, one can use the dynamic analysis to study
the initial imperfection sensitivity of the stiffened
plate.

As shown in Fig. 3, the dynamic load is instan-

Table 4 Experimental results for the buckling loads

of plates

Specimen Zo (5{‘&);")" ((I;‘g’}‘; (FTedexp
0.00 404.73 390. 98 1.035

0.13 374.56 ” 0. 958

0.22 350. 66 ” 0. 897

12 0.26 336. 55 ” 0. 861
0.36 300. 51 ” 0.769

0.50 246. 83 ”" 0.634

0.90 105. 39 ” 0.270

0.00 273.94 271.84 1.008

0.10 264. 17 " 0.972

S1 0.37 229. 96 ” 0. 846
0.5 213.4 ” 0.785

0.8 169. 68 ” 0.624

0.00 393. 26 388. 21 1.013

0.10 382. 39 4 0. 985

0.20 369. 58 ” 0.952

S2 0.25 362. 59 ” 0.934
0. 39 341.24 ” 0. 879

0.54 315.61 " 0.813

0.93 237.97 ” 0.613

0.00 546. 28 536. 09 1.019

s3 0.14 528. 05 4 0. 985
0.5 470.15 ” 0. 877

0.91 331.93 4 0.706

taneously applied to the constant load [y, The
dynamic buckling load is a little larger than the
static buckling load but is almost the same. Com-
paring the data in Table 2 and 4 with the specimen
12, the dynamic buckling load is larger than static

buckling loads by 0.5%.

5.2. Initial Imperfection Sensitivity

The initial imperfection sensitivity of the non-
stiffened plate is relatively high. As shown in Table
3, when {,=1, Te=0.235 and this value is little
more than that of the cylindrical shell'®. But, in the
case of S3, which is adequately stiffened, I"e:=0. 68.
In the case of S4, which has a large eccentricity
in the stiffener, I'er=0.815. Thus, one can conclude
that the initial imperfection sensitivity becomes
lower with increasing eccentricity in the stiffener.
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Table 5 Buckling loads for perfect stiffened and unstiffened plates
Specimen 11 I[2 S1 52 S3 S4
Palkg f) 115. 85 3€0. 98 271.84 388.21 536. 09 1185. 64
Po/(PDny 1.0 3.375 2. 346 3.351 4,627 10. 234
A=h./h 0.0 0.0 2.5 3.75 5.0 10.0

5.3. Eccentricity of the Stiffener

In Table 5, values of the ratio of the buckling
load of perfect stiffened plates and isotropic plates
are shown.

In Table 5, the critical loads of the S1 and S2 are
smaller than that of 12. However S3 and 54, which
are same sectional area and larger eccentricities,
show much larger critical loads. Thus, one can
conclude that the effectiveness of the stiffener depends
on the eccentricity ratio A of stiffened plates.

6. Conclusion

The dynamic buckling analysis is employed to
investigate the buckling strength of stiffened plates
with various initial imperfections. The dynamic
buckling load of a stiffened plate under step comp-
ressive stress shows almost same value of the cla-
ssical buckling load of stiffened plates. This analogy
is supported by the experimental resulits. The initial
imperfection sensitivity of the stiffened plate is
analyzed by the dynamic buckling analysis and
static experiment. The initial imperfection sensitivity
of the stiffened plate is less sensitive than the
isotropic (unstiffened) plate. The eccentricity of the
stiffener is the major factor for the sensitivity and
the eccentricity ratio is inversely proportional to the
initial imperfection sensitivity of stiffened plates.

Finally the authors wish to express their deep
appreciation to the Korea Science and Engineering
Foundation for supporting the research grant.
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