• 제목/요약/키워드: Inertial Coefficient

검색결과 50건 처리시간 0.024초

The inertial coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.57-67
    • /
    • 2014
  • For a building with a dominant windward wall opening, the wind-induced internal pressure response can be described by a second-order non-linear differential equation. However, there are two ill-defined parameters in the governing equation: the inertial coefficient $C_I$ and the loss coefficient $C_L$. Lack of knowledge of these two parameters restricts the practical use of the governing equation. This study was primarily focused on finding an accurate reference value for $C_I$, and the paper presents a systematic investigation of the factors influencing the inertial coefficient for a wind-tunnel model building including: opening configuration and location, wind speed and direction, approaching flow turbulence, the model material, and the installation method. A numerical model was used to simulate the volume deformation under internal pressure, and to predict the bulk modulus of an experimental model. In considering the structural flexibility, an alternative approach was proposed to ensure accurate internal volume distortions, so that similarity of internal pressure responses between model-scale and full-scale building was maintained. The research showed 0.8 to be a reasonable standard value for the inertial coefficient.

Implementation and Design of Inertial Sensor using the estimation of error coefficient method for sensing rotation

  • Lee, Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.95-101
    • /
    • 2020
  • We studied the Implementation and design of inertial sensor that enables to improve performance by reduce the noise of rotor which Angle of inclination. Analyze model equation including motion equation and error, signal processing filter algorithm on high frequency bandwidth with eliminates error using estimation of error coefficient method is was designed and the prototype inertial sensor showed the pick off noise up to 0.2 mV and bias error performance of about 0.06 deg/hr by the experiments. Accordingly, we confirmed that the design of inertial sensor was valid for high rotation.

관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구 (Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;강부병;이희성
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Inertial Dynamic Effect on the Rates of Diffusion-Controlled Ligand-Receptor Reactions

  • Lee, Woo-Jin;Kim, Ji-Hyun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2973-2977
    • /
    • 2011
  • It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work, however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity relaxation time.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

ADMISSIBLE INERTIAL MANIFOLDS FOR INFINITE DELAY EVOLUTION EQUATIONS

  • Minh, Le Anh
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.669-688
    • /
    • 2021
  • The aim of this paper is to prove the existence of an admissible inertial manifold for mild solutions to infinite delay evolution equation of the form $$\{{\frac{du}{dt}}+Au=F(t,\;u_t),\;t{\geq}s,\\\;u_s({\theta})={\phi}({\theta}),\;{\forall}{\theta}{\in}(-{{\infty}},\;0],\;s{\in}{\mathbb{R}},$$ where A is positive definite and self-adjoint with a discrete spectrum, the Lipschitz coefficient of the nonlinear part F may depend on time and belongs to some admissible function space defined on the whole line. The proof is based on the Lyapunov-Perron equation in combination with admissibility and duality estimates.

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.