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It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work,

however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface

there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial

dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic

effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand

as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity

relaxation time.
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Introduction

Biochemical processes occurring in a living system are

controlled by the recognition of small molecules (called

ligands) by the receptors on the cell surface. A proper interpreta-

tion of the experimental results on the ligand-receptor interac-

tions requires a detailed analysis of their binding kinetics in

solution phase. The rate of binding of a ligand onto its receptor

at the cell surface is often diffusion-influenced,1-3 and various

aspects affecting the kinetics have been investigated.4-10

In the present work, we investigated the inertial dynamic

effect (IDE) on the diffusion-controlled ligand-receptor binding

kinetics. The kinetics of diffusion-controlled reactions in solu-

tions has usually been described by the Smoluchowski equa-

tion, which neglects the inertial motions of the reactants so

that the applicability is limited to the high-friction regime.

To take account of the IDE, one needs to consider the

Fokker-Planck-Kramers equation but its solution is very

difficult to obtain.11-13 We will therefore introduce a simple

reaction model that yields an approximate analytic result.

In a previous work,14 we estimated the IDE on the reaction

between simple hard-sphere reactants by comparing the

diffusive Brownian dynamics (BD) simulation results with

those obtained from Langevin dynamics (LD) simulation.

The diffusion coefficients of the reactants were calculated

from separate molecular dynamics (MD) simulations with

the solvent molecules modeled also as hard spheres. At the

normal liquid densities, the IDE decreases the reaction rate

by 19% when the reactants have the same size as the solvent

molecules. As expected, the IDE turned out to be smaller

when the size of the reactants gets larger than the solvent

molecules. When the radius of the reactants is twice of that

of solvent molecules, the magnitude of inertial dynamic

effect reduces to 11%. 

It must be noted that the above estimates of the IDE were

calculated for the cases where the reactants are spheres with

uniform reactivity. The reactant molecules usually have a

localized reaction site. Only when the diffusive rotational

motion of the reactant occurs rapidly, it can be modeled as a

uniformly reacting hard sphere. In many biochemical reactions,

one of the reactants is better modeled as a large immobile

object with a highly localized reaction site. The binding of a

ligand onto the receptor at the cell surface is such an extreme

case. It is of interest to estimate the IDE in this case.

We consider a model reaction system depicted in Fig. 1.

For simplicity, we model the ligands as spherical Brownian

particles that move independently over an infinite plane. The

receptor is represented as a circular reactive patch with radius a

on the plane. The reaction is assumed to occur when the

ligand approaches the reactive patch within a preset distance.

We compare the steady-state reaction rate constants calculat-

ed with and without the IDE included. It turns out that the

IDE on the ligand-receptor reaction can be quite significant. 

Theory

We consider two types of irreversible reactions that may

be schematically represented as A+B → A+P (Type 1) and

†This paper is dedicated to Professor Eun Lee on the occasion of his ho-

nourable retirement.

Figure 1. A simplified model of ligand-receptor reaction. a is
radius of the reactive patch of the receptor, and B denotes a ligand.
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A+B → P with [A]<<[B] (Type 2). In Type 1 reactions, the

receptor A acts as an enzyme that converts the ligand

(substrate) B to a product P. In Type 2 reactions, the deactivated

receptor A becomes an activated form P upon capturing the

ligand B. The usual kinetic observables are the survival

probabilities SB(t) of a ligand molecule for Type 1 reactions,

and SA(t) of a free receptor for Type 2 reactions.

When the interaction between ligands and their competi-

tion for the reaction with the receptor can be neglected, these

survival probabilities decay according to 

 and (1)

with the time-dependent rate coefficient given by14,15

(2)

Here, Λ denotes the set of relevant coordinates describing

the reaction progress between A and B. If one neglects the

IDE, Λ includes only the position vector r[=(r,θ, z)] where

(r,θ, z) are the cylindrical coordinates with the coordinate

origin at the center of the reactive patch in Fig. 1. On the

other hand, if the IDE is to be included, Λ should also include

the velocity that is conjugated to r.

kR is a constant measuring the intrinsic reactivity and has

the dimension of inverse time. S(Λ) is a dimensionless sink

function, and kRS(Λ) represents the rate of disappearance of

a ligand due to reaction when its phase space coordinates are

given by Λ. Hence the range of S(Λ) defines the reaction

zone at which the reaction can occur. 

ρ(Λ, t) represents the nonequilibrium pair correlation; that

is, [B]ρ(Λ,t)dΛ gives the number of ligands within the

phase-space volume element dΛ at Λ that has survived by

time t. Hence, we have  with V denoting

the volume of the reaction system. ρ(Λ,t) evolves in time

according to the reaction kinetic equation given by14

(3)

Here,  is the time-evolution operator governing the

nonreactive dynamics of a ligand. 

We assume that the ligands are distributed in equilibrium

at t = 0; that is, ρ (Λ,t =0)= g(Λ) with g(Λ) denoting the

equilibrium pair correlation function. A formal solution to

Eq. (2) is then given by

(4)

where the hat denotes the Laplace transform. From Eqs. (1)

and (4), we obtain

(5)

where  is the Laplace-transformed nth-order sink-sink

correlation function defined by

(6)

The [1/1] Padé approximant to the power series in Eq. (5)

is given by

(7)

with . This type of rate

expression was first obtained by Wilemski and Fixman

(WF) by introducing a so-called closure approximation.16

The key dynamic quantity D1(t)/Vrx can be roughly interpret-

ed as the returning probability Pert (t) that a ligand initially

located in the reaction zone will be found again in the

reaction zone at a later time t in the absence of reaction. Its

more explicit expression is given by

, (8)

where  is the Green's function defined by

(9)

In the limit of  and s→ 0 , Eq. (7) gives the

steady-state diffusion-controlled reaction rate constant,

(10)

Hereafter, we will assume that the potential of mean force

between the ligand and the receptor can be neglected. If the

inertial effect on the Brownian motion of the ligand cannot

be neglected,  should be represented by the Fokker-Plank

operator,

(11)

Here γ and m denote the friction coefficient and the mass

of a ligand, respectively. On the other hand, if the inertial

effect can be neglected,   can be approximated by the

diffusion operator,

, (12)

with the diffusion coefficient given by the Einstein relation,

D = kBT/mγ. 

Since we want to evaluate the inertial effect on the rate of

diffusive approach of the ligand, we should use the same

reaction model whether the inertial effect can be neglected

or not. We thus take a sink function of the form

S(Λ) = S(r) = H(a-r)H(z)H(∆z-z), (13)

where H(x) is the Heaviside step function and ∆z is the

thickness of the reaction zone (see Fig.1). If ∆z is small

enough, Eq. (13) tells that the ligand undergoes reaction

when it approaches the reactive patch of radius a within the

distance ∆z regardless of its velocity.

When the IDE can be neglected, we take Λ = r and

g(Λ) = 1. The Green's function in Eq. (8) can be obtained by

solving ∂G/∂t =    DG with the reflecting boundary condition
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(∂G/∂z)z=0 =0. Its explicit expression in the Laplace domain is

given by17

, (14)

where η = (k2+s/D)1/2, , and

Jv(x) is the vth-order Bessel function of the first kind. 

The steady-state rate constant expression in Eq. (10) can

be evaluated with Eqs. (8), (13) and (14) by using the addi-

tion theorem for the Bessel function J0(kR),
18

. (15)

We obtain 

(16)

Here,  and  is the

generalized hypergeometric function. The superscript 'BD'

means that the result can be verified by the diffusive

Brownian dynamics simulations. It is worthy to note that

 and this limiting expression coincides

with that obtained by Shoup, Lipari and Szabo using the

constant-flux approximation.5 This coincidence says that the

constant flux approximation is equivalent to the WF approxima-

tion at least in the present reaction model with ∆z = 0. 

To include the IDE, we take  and g(Λ) is given

by the Maxwell-Boltzmann velocity distribution fMB(v).

Then, Eq. (8) reduces to

, (17)

where  and 

. It can be shown that 

is a solution of the generalized diffusion equation,19

, (18)

with the time-dependent diffusion coefficient D(t) given by

. (19)

To solve Eq. (18), we need the time-domain expression for

Eq. (14). The inverse Laplace transformation of Eq. (14) gives

. (20)

Replacement of Dt with 

in the right-hand side of Eq. (20) gives the solution of Eq.

(18). With the resulting Green's function  and the

sink function in Eq. (13), the steady-state rate constant

expression in Eq. (10) can be evaluated as

, (21)

where ,  is the ratio

of the diffusion time along the reactive patch to the velocity

relaxation time, Iv(x) is the vth-order modified Bessel func-

tion of the first kind, and erf(x) is the error function. The

superscript 'LD' means that the result can be verified by the

full Langevin dynamics simulations with the inertial

dynamics included.

Computer Simulations

To evaluate the accuracy of the analytic results, we also

calculated the steady state rate (ks) for the reaction between a

Brownian particle and a patch on a plane from computer

simulations. We employed the simulation protocols develop-

ed by our group to calculate the diffusion-controlled reaction

rates.14,20-22

Each trajectory was started at a random position (and in

the case of LD with a random velocity selected from the

Maxwell-Boltzmann velocity distribution fMB(v)) in the

reaction zone. The trajectory was then propagated by using

the appropriate move algorithms; we used the Ermak-

McCammon method23 for diffusive BD trajectories and the

Ermak-Buckholz method24 for LD trajectories. We used the

variable time steps; the details can be found in Refs. 21 and 22.

When the ligand B moved into the forbidden region (z < 0;

see Fig. 1), we put it back to the free space just by changing

the sign of its z-coordinate for BD trajectories. For LD

trajectories, we changed the sign of the z-component velocity as

well as that of the z-coordinate. We compared the results of

this implementation of collision events between the ligand B

and the cell surface with those obtained by using the more

sophisticated methods employed in the previous studies21,22

and found that the results are statistically equivalent. 

Trajectories were terminated when their time length

exceeded a cutoff time, Tmax. From the record of N

trajectories of time length Tmax, the returning probability

Pret(t) defined by Eq. (8) can be calculated as

(number of trajectories found in the reaction 

zone at time t) (22)

The steady-state diffusion-controlled reaction rate constant

kSS is determined by ; see Eq. (10). The error in the

calculated value of  due to the truncation of the

trajectories at a finite time Tmax can be corrected by noting

the asymptotic behavior of the returning probability; Pret(t) ~

Pret(Tmax) (t/Tmax)
-3/2. We thus have

 

(23)

With Vrx = πa2∆z, we can then calculate the rate constant kSS
for the model system from Eq. (10).

In the present work, as the units of mass and length we use

the mass m and the diameter σ of the ligand, respectively.

The unit of energy is kBT, so that the time unit is (m/kBT)
1/2σ.

We carried out simulations for 7 different patch sizes (a =

0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0). For each patch size, ∆z
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was varied as 0.01, 0.02, 0.03, and 0.04. The diffusion

coefficient were varied as D = 0.01, 0.05, and 0.10; the

friction coefficient used for LD simulation was then given

by 1/D. Most of the BD and LD trajectories were terminated

at Tmax = 100.

Results and Discussion

In the diffusive regime, an exact expression for 

was derived by Hill:4

(24)

On the other hand, our rate expression in Eq. (16) based on

the WF approximation gives

, (25)

which underestimates the exact value by 7.5%. Our BD

simulation method for calculating the diffusion-controlled

rate coefficient can be applied to a reaction system involving

a sink function with finite width (x = ∆z/a > 0), but the value

of  can be obtained by extrapolation as displayed

in Fig. 2. In the figure, the BD simulation results for x > 0

are represented by the filled squares, which are fitted nicely

by the solid curve given by Eq. (16). For comparison, we

also draw two horizontal lines representing the two values

for  given by Eqs. (24) and (25). Since our BD

method is also based on the WF approximation, it would

give the same error as Eq. (16) in the  limit. 

For the LD case, there is no exact result even in the 

limit. Hence, we compare the survival probability calculated

from our simulation method with that obtained from the

direct simulation method. In the direct method, we set up a

cubic box of size L3, and the reactive patch (see Fig. 1) is

located at the center of the bottom face, z = 0. Then many B

particles are placed randomly in the box. The B particles do

not interact with each other and react independently with the

patch. That is, once a B particle touches the patch, it is

removed from the box. We impose the periodic boundary

condition in the x,y-direction. For the z-direction, we impose

a reflecting boundary at z = L to avoid the unreactive loss of

the B particles from the simulation box. The time-dependent

survival probability of B particles calculated directly in this

way with L = 20 can be compared with that given by the first

expression in Eq. (1). A typical result is shown in Fig. 3. One

can see that our LD simulation result, based on the WF

approximation, is in good agreement with that obtained from

the direct simulation method.

By comparing the BD and the LD results, we can now

evaluate the inertial effect on the reaction rate. The result is

displayed in Fig. 4. As known from previous studies, the

inertial effect retards the reaction rate, and the deviation of

the ratio  from unity measures the magnitude of the

inertial effect. As expected, the inertial effect becomes larger

as the friction coefficient, kBT/D, gets smaller. An important

new finding is that the inertial effect can be quite pronounced

when the size of the reactive patch is small. More precisely, it is

the ratio of the velocity relaxation time to the diffusion time

along the reactive patch that determines the magnitude of the

inertial effect, as can be seen from Eq. (21). Equation (21)

was derived using the generalized diffusion equation, Eq.

(18), in addition to the WF approximation. Nevertheless, as

shown in Fig. 4, it provides an accurate estimate for the

inertial dynamic effect on the diffusion-controlled, model

ligand-receptor reactions. 
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BD

x 0=( )
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x 0=( ) 4Da=
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x 0→( ) 3π
2

Da 8 3.7Da≅⁄=

kSS
BD

x 0=( )
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kSS
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⁄

Figure 2. Determining the value of  by extrapola-
tion when D = 0.01 and a = 0.3. 

kSS
BD

x ∆z a 0=⁄=( )

Figure 3. Comparison of the direct LD and the present LD results
for the survival probability when D = 0.1, a = 0.3, and ∆z = 0.01. 

Figure 4. The inertial effects on the reaction rate coefficient calculated
for ∆z = 0.01. Filled squares, triangles, and circles are the results of
computer simulations. The solid, dotted, and dot-dashed curves are the
results calculated from the analytic expressions given by Eqs. (16) and
(21).
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