Browse > Article
http://dx.doi.org/10.12989/sss.2019.23.6.627

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper  

Wang, Zhi Hao (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power)
Xu, Yan Wei (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power)
Gao, Hui (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power)
Chen, Zheng Qing (College of Civil Engineering, Hunan University)
Xu, Kai (College of Civil Engineering, Hunan University)
Zhao, Shun Bo (International Joint Research Lab for Eco-building Materials and Engineering of Henan Province, North China University of Water Resources and Electric Power)
Publication Information
Smart Structures and Systems / v.23, no.6, 2019 , pp. 627-639 More about this Journal
Abstract
Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.
Keywords
stay cable; rotary electromagnetic damper; inertial mass; negative stiffness; modal damping ratio;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Choi, Y.T. and Wereley, N.M. (2006), "Self-powered magnetorheological dampers", J. Vib. Acoust., 131(4), 044501(1-5). https://doi.org/10.1115/1.3142882.   DOI
2 Christenson, R.E., Spencer, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech. - ASCE, 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268).   DOI
3 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semi-active MR damper", Comput. - Aided Civ. Inf., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.   DOI
4 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.   DOI
5 Wang, X.Y., Ni, Y.Q., Ko, J.M., et al. (2005),"Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng.Struct.,27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.   DOI
6 Wang, Z.H., Chen, Z.Q., Gao, H., et al. (2018), "Development of a self-powered magnetorheological damper system for cable vibration control", Appl. Sci., 8, 1-17. https://doi.org/10.3390/app8010118.   DOI
7 Wang, Z.H., Gao, H., Fan, B.Q. and Chen, Z.Q. (2019), "Inertial mass damper for vibration control of cable with sag", J. Low. Freq. Noise V. A., 1-12.
8 Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart. Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007.   DOI
9 Weber, F. and Distl, H. (2015a) "Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers", Struct. Control Health Monit., 22(2), 237-254. https://doi.org/10.1002/stc.1671.   DOI
10 Weber, F. and Distl, H. (2015b), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: Approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015.   DOI
11 Xu, Y. L. and Yu, Z. (1998), "Vibration of inclined sag cables with oil dampers in cable stayed bridges", J. Bridge Eng., 3(4), 194-203. https:/doi.org/10.1061/(ASCE)1084-0702(1998)3:4(194).   DOI
12 Zhu, H.P., Li, Y.M., Shen, W.A. and Zhu, S.Y. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal. Pr., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023.   DOI
13 Fournier, J.A. and Cheng, S.H. (2014), "Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations", J. Bridge Eng. - ASCE, 19(4), 04013022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000562.   DOI
14 Zhu, S.Y., Shen, W.A., Xu, Y.L. and Lee, W.C. (2012), "Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing", Eng. Sturct., 34, 198-212. https://doi.org/10.1016/j.engstruct.2011.09.024.   DOI
15 Duan, Y.F., Tao, J.J., Zhang, H.M., et al. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., 26(1), e2277. https://doi.org/10.1002/stc.2277.
16 Duan, Y.F., Ni. Y.Q., Zhang, H.M., et al. (2019a), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., 23(6), (in press).
17 Duan, Y.F., Ni, Y.Q., Zhang, H.M., et al. (2019b), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., 23(6), (in press).
18 Fujino,Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng .- ASCE, 134(2), 269-278. https://doi.org/10.1061/(ASCE)07339445(2008)134:2(269).   DOI
19 Zhou, H.J., Sun, L. and Xing, F. (2014), "Damping of full-scale stay cable with viscous damper: Experimentand analysis", Adv. Struct. Eng., 17(2), 265-274. https://doi.org/10.1260/1369-4332.17.2.265.   DOI
20 Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations" , Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809.   DOI
21 Zhou, H. J., Yang X., Sun, L.M., et al. (2015), "Free vibrations of a two-cable network with near-support dampers and a crosslink", Struct. Control Health Monit., 22(9), 1173-1192. https://doi.org/10.1002/stc.1738.   DOI
22 Huang, H., Sun, L.M. and Jiang, X. (2012), "Vibration mitigation of stay cable using optimally tuned MR damper", Smart Struct. Syst., 9(1), 35-53. https://doi.org/10.12989/sss.2012.9.1.035.   DOI
23 Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertial through tuned viscous mass damper", Eng. Struct., 56(6), 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044.   DOI
24 He, X.H., Cai, C., Wang, Z.J., Jimg, H.Q. and Qin, C.W. (2018), "Experimental verification of the effectiveness of elastic crossties in suppressing wake-induced vibrations of staggered stay cables", Eng. Struct., 167, 151-165. https://doi.org/10.1016/j.engstruct.2018.04.033.   DOI
25 Hogsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monit., 18(3), 289-304. https://doi.org/10.1002/stc.371.   DOI
26 Kim, I.H., Jung, H.J. and Koo, J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibration of a full-scale stay cable", Smart Mater. Struct., 19(11), 115027(1-10). https://doi.org/10.1088/0964-1726/19/11/115027.   DOI
27 Iemura, H. and Pradono, M.H. (2003), "Application of pseudo negative stiffness control to the benchmark cable-stayed bridges", Struct. Control Health Monit., 10(3-4), 187-203. https://doi.org/10.1002/stc.25.   DOI
28 Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138.   DOI
29 Johnson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput. - Aided. Civ. Inf., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305.   DOI
30 Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Bautechnik, 59(10), 325-332.
31 Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), "Vibration control of stay cables of Shandong Binzhou Yellow River Highway Bridge by using magnetorheological fluid dampers", J. Bridge Eng. -ASCE, 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401).   DOI
32 Krenk, S. (2000), "Vibration of a taut cable with an external damper", J. Appl. Mech. - T ASME, 67, 772-776. https://doi.org/10.1115/1.1322037.   DOI
33 Lazar, I.F, Neild, S.A. and Wagg, D.J. (2016) "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017   DOI
34 Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200   DOI
35 Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magnetorheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7.   DOI
36 Liu, M., Song, G.B. and Li, H. (2007), "Non-model-based semiactive vibration suppression of stay cables using magnetorheological fluid damper", Smart. Mater. Struct., 16(4), 1447-1452. https://doi.org/10.1088/0964-1726/16/4/059.   DOI
37 Lu, L., Duan, Y.F., Spencer, B.F., Jr., Lu, X. and Zhou, Y. (2017). "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), 1-12. https:/doi.org/10.1002/stc.1986.
38 Luo, J.N., Jiang. J.Z. and Macdonald J.H.G. (2019), "Cable vibration suppression with inerter-based absorbers", J. Eng. Mech., 145(2), 04018134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554.   DOI
39 Main, J.A. and Jones, N.P. (2002), "Free vibration of taut cable with attached damper, I: linear viscous damper", J. Eng. Mech. - ASCE, 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062).   DOI
40 Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass damper", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355.   DOI
41 Or, S.W., Duan, Y.F., Ni Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19(11), 1327-1338. https://doi.org/10.1142/9789812771209_0047.   DOI
42 Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. - ASCE, 119, 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961).   DOI
43 Shi, X., Zhu, S.Y. and Spencer, B.F. (2017), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech. - ASCE, 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289.   DOI
44 Palomera-Arias, R., Connor, J.J. and Ochsendorf, J.A. (2008), "Feasibility study of passiveelectromagnetic damping systems", J. Struct. Eng.-ASCE, 134, 164-170. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(164)   DOI
45 Pradono, M.H., Iemura, H. Igarashi, A., Toyooka, A. and Kalantari, A. (2009), "Passively controlled MR damper in the benchmark structural control problem for seismically excited highway bridge", Struct. Control Health Monit., 16(6), 626-638. https://doi.org/10.1002/stc.341.   DOI
46 Sapinski, B. (2008), "An experimental electromagnetic induction device for a magnetorheological damper", J. Theor. App. Mech. -POL, 46(4), 933-947.
47 Shen, W.A., Zhu, S.Y. and Zhu, H.P. (2016), "Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping", Smart Mater. Struct., 25(6), 065011, 17. https://doi.org/10.1088/0964-1726/25/6/065011.   DOI
48 Shi, X., Zhu, S.Y., Li, J.Y. and Spencer, B.F., Jr. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart. Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044   DOI
49 Shi, X. and Zhu S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042.   DOI
50 Sodano, H.A. and Bae, J.S. (2004), "Eddy current damping in structures", Shock Vib. Digest, 36(6), 469-478. https://doi.org/10.1177/0583102404048517.   DOI
51 Spencer, B.F., Dyke, S.J., Sain, M.K., et al (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech. - ASCE, 123(3), 230-238. https://doi.org/10.4271/2006-01-2520.   DOI
52 Cheng, S.H., Darivandi, N. and Ghrib, F. (2010), "The design of an optimal viscous damper for a bridge stay cable using energybased approach", J. Sound. Vib., 329(22), 4689-4704. https://doi.org/10.1016/j.jsv.2010.05.027.   DOI
53 Chen, L., Sun L.M. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627.   DOI
54 Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter" IEEE T. Automat. Contr., 47(10), 1648-1662. http://dx.doi.org/10.1109/TAC.2002.803532.   DOI
55 Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni. Y.Q., Spencer, B.F., Jr., Yang, G. and Hu, J.H. (2004),"MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., 7(5), 293-304. http://dx.doi.org/10.1117/12.498072.   DOI
56 Jung, H.J., Jang, J.E., Choi, K.M. and Lee, H.J. (2008), "MR fluid damper-based smart damping systems for long steel stay cable under wind load", Smart. Struct. Syst., 4(5), 697-710. https://doi.org/10.12989/sss.2008.4.5.697.   DOI
57 Caracoglia, L. and Jones, N.P. (2007), "Damping of taut-cable systems, two dampers on a single stay", J. Eng. Mech. - ASCE, 133(10), 1050-1060. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1050).   DOI
58 Ahmad, J., Cheng, S.H. and Ghrib, F. (2018), "Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks", J. Sound. Vib., 417, 132-148. https://doi.org/10.1016/j.jsv.2017.12.023.   DOI
59 Cai, C.S., Wu, W.J. and Araujo, M. (2007), "Cable vibration control with a TMD-MR damper system: experimental exploration", J. Struct. Eng. - ASCE, 133(5), 629-637. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(629).   DOI