Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.8.2973

Inertial Dynamic Effect on the Rates of Diffusion-Controlled Ligand-Receptor Reactions  

Lee, Woo-Jin (Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd.)
Kim, Ji-Hyun (Department of Chemistry, Seoul National University)
Lee, Sang-Youb (Department of Chemistry, Seoul National University)
Publication Information
Abstract
It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work, however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity relaxation time.
Keywords
Inertial dynamic effect; Ligand-receptor reactions; Diffusion-controlled reactions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ermak, D. L.; Buckholz, H. J. Comput. Phys. 1980, 35, 169.   DOI   ScienceOn
2 Harris, S. J. Chem. Phys. 1981, 75, 3103.
3 Harris, S. J. Chem. Phys. 1982, 77, 934
4 Harris, S. J. Chem. Phys. 1983, 78, 4698.   DOI
5 Naqvi, K. R.; Mork, K. J.; Waldenstrøm, S. Phys. Rev. Lett. 1982, 49, 304.   DOI
6 Naqvi, K. R.; Waldenstrøm, S.; Mork, K. J. J. Chem. Phys. 1983, 78, 2710.   DOI
7 Ibuki, K.; Ueno, M. J. Chem. Phys. 1997, 106, 10113.   DOI   ScienceOn
8 Ibuki, K.; Ueno, M. Bull. Chem. Soc. Jpn. 1997, 70, 543.   DOI   ScienceOn
9 Lee, J.; Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 2004, 120, 7564.   DOI   ScienceOn
10 Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1883.   DOI
11 Wilemski, G.; Fixman, M. J. Chem. Phys. 1973, 58, 4009.   DOI
12 Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids, 2nd ed.; Clarendon Press: Oxford, 1959.
13 Wang, Z. X.; Guo, D. R. Special Functions; World Scientific: Singapore, 1989.
14 Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, 1989.
15 Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1904.   DOI
16 Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 1999, 111, 10119.   DOI   ScienceOn
17 Yang, S.; Han, H.; Lee, S. J. Phys. Chem. B 2001, 105, 6017   DOI   ScienceOn
18 Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352.   DOI
19 DeLisi, C. Q. Rev. Biophys. 1980, 13, 201.   DOI
20 Berg, O. G.; von Hippel, P. H. Ann. Rev. Biophys. Biophys. Chem. 1985, 14, 131.   DOI
21 Wiegel, F. W. Phys. Rep. 1983, 95, 283.   DOI   ScienceOn
22 Hill, T. L. Proc. Nat. Acad. Sci. U.S.A. 1975, 72, 4918.   DOI   ScienceOn
23 Barzykin, A. V.; Shushin, A. I. Biophys. J. 2001, 80, 2062.   DOI   ScienceOn
24 Shoup, D.; Lipari, G.; Szabo, A. Biophys. J. 1981, 36, 697.   DOI   ScienceOn
25 Keizer, J.; Ramirez, J.; Peacock-Lopez, E. Biophys. J. 1985, 47, 79.   DOI   ScienceOn
26 Baldo, M.; Grassi, A.; Raudino, A. Phys. Rev. A 1989, 40, 1017.   DOI
27 Batsilas, L.; Berezhkovskii, A. M.; Shvartsman, S. Y. Biophys. J. 2003, 85, 1.
28 Moreira, A. G.; Marques, C. M. J. Chem. Phys. 2004, 120, 6229.   DOI   ScienceOn