• Title/Summary/Keyword: Induced pluripotent stem cells

Search Result 99, Processing Time 0.022 seconds

Pig Pluripotent Stem Cells as a Candidate for Biomedical Application

  • Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.139-147
    • /
    • 2019
  • Stem cells are progenitor cells that are capable of self-renewal and differentiation into various cells. Especially, pluripotent stem cells (PSCs) have in vivo and in vitro differentiation capacity into three germ layers and can proliferate infinitely. The differentiation ability of PSCs can be applied for regenerative medicine and tissue engineering. In domestic animals, their PSCs have a potential for preclinical therapy as well as the production of transgenic animals and agricultural usage such as cultured meat. Among several domestic animals, a pig is considered as an ideal model for biomedical and agricultural purposes mentioned above. In this reason, studies for pig PSCs including embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs) have been conducted for decades. Therefore, this review will discuss the history of PSCs derived from various origins and recent progress in pig PSC research field.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells

  • In-Won Lee;Hyeon-Geun Lee;Dae-Ky Moon;Yeon-Ji Lee;Bo-Gyeong Seo;Sang-Ki Baek;Tae-Suk Kim;Cheol Hwangbo;Joon-Hee Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.109-120
    • /
    • 2023
  • Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.

Directed Differentiation of Pluripotent Stem Cells by Transcription Factors

  • Oh, Yujeong;Jang, Jiwon
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.200-209
    • /
    • 2019
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used as promising tools for regenerative medicine, disease modeling, and drug screening. Traditional and common strategies for pluripotent stem cell (PSC) differentiation toward disease-relevant cell types depend on sequential treatment of signaling molecules identified based on knowledge of developmental biology. However, these strategies suffer from low purity, inefficiency, and time-consuming culture conditions. A growing body of recent research has shown efficient cell fate reprogramming by forced expression of single or multiple transcription factors. Here, we review transcription factor-directed differentiation methods of PSCs toward neural, muscle, liver, and pancreatic endocrine cells. Potential applications and limitations are also discussed in order to establish future directions of this technique for therapeutic purposes.

Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells: Current Strategies and Limitations

  • Jiang, Yanqing;Park, Peter;Hong, Sang-Min;Ban, Kiwon
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.613-621
    • /
    • 2018
  • The capacity of differentiation of human pluripotent stem cells (hPSCs), which include both embryonic stem cells and induced pluripotent stem cells, into cardiomyocytes (CMs) in vitro provides an unlimited resource for human CMs for a wide range of applications such as cell based cardiac repair, cardiac drug toxicology screening, and human cardiac disease modeling. However, their applicability is significantly limited by immature phenotypes. It has been well known that currently available CMs derived from hPSCs (hPSC-CMs) represent immature embryonic or fetal stage CMs and are functionally and structurally different from mature human CMs. To overcome this critical issue, several new approaches aiming to generate more mature hPSC-CMs have been developed. This review describes recent approaches to generate more mature hPSC-CMs including their scientific principles, advantages, and limitations.

Motor Neuron Disease and Stem Cell Approach for Its Remediation

  • Kim, Jong Deog;Bhardwaj, Jyoti;Chaudhary, Narendra;Seo, Hyo Jin
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.

iPSC-Derived Natural Killer Cells for Cancer Immunotherapy

  • Karagiannis, Peter;Kim, Shin-Il
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.541-548
    • /
    • 2021
  • The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.

Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases

  • Chang, Eun-Ah;Jin, Sung-Won;Nam, Myung-Hyun;Kim, Sang-Dae
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.493-501
    • /
    • 2019
  • The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson's disease, Alzheimer's disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.

Life Cycle Analysis of Stem Cell Technology Based on Diffusion Model : Focused on the Research Stage (확산 모형을 이용한 줄기 세포 기술의 수명 주기 분석 : 연구 단계를 중심으로)

  • Jang, In-young;Hong, Jungsik;Kim, Taegu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.488-498
    • /
    • 2015
  • Research on stem cells can be divided into three categories : pluripotent stem cell, adult stem cell, and induced pluripotent stem cell. Technology life cycle (TLC) on research stage is analyzed for the three stem cell categories based on diffusion model. Three diffusion models-logistic, Bass, and Bass model with integration constant (BMIC)-are applied to the number of articles related to each stem cell category in SCOPUS lists. Two different parameter estimation methods is used for each of logistic and Bass model. Results show that (1) the current year, 2015, lies in growth period at pluripotent stem cell and adult stem cell, and lies in growth period or maturity period at induced pluripotent stem cell. (2) Model fitness is the highest at BMIC model. (3) Imitation effect works best at the research area of induced pluripotent stem cell.

Disease-specific pluripotent stem cells

  • Kang, Hoon-Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.8
    • /
    • pp.786-789
    • /
    • 2010
  • Induced pluripotent stem (iPS) cells are generated by epigenetic reprogramming of somatic cells through the exogenous expression of transcription factors. Recently, the generation of iPS cells from patients with a variety of genetic diseases was found to likely have a major impact on regenerative medicine, because these cells self-renew indefinitely in culture while retaining the capacity to differentiate into any cell type in the body, thereby enabling disease investigation and drug development. This review focuses on the current state of iPS cell technology and discusses the potential applications of these cells for disease modeling; drug discovery; and eventually, cell replacement therapy.