DOI QR코드

DOI QR Code

Motor Neuron Disease and Stem Cell Approach for Its Remediation

  • Kim, Jong Deog (Research Center on Anti-Obesity and Health Care (RCAOHC), Chonnam National University) ;
  • Bhardwaj, Jyoti (Department of Biotechnology, Chonnam National University) ;
  • Chaudhary, Narendra (Department of Biotechnology, Chonnam National University) ;
  • Seo, Hyo Jin (Department of Biotechnology, Chonnam National University)
  • Received : 2013.05.04
  • Accepted : 2013.10.21
  • Published : 2013.10.30

Abstract

Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.

Keywords

References

  1. Kanning, K. C., A. Kaplan, and C. E. Henderson (2010) Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 3: 409-440.
  2. Bradley, W. (1996) Overview of motor neuron disease: classification and nomenclature. Clin. Neurosci. 3: 323-326.
  3. Fiszman, M. L., L. N. Borodinsky, K. C. Ricart, O. P. Sanz, and R. E. Sica (1999) Cu/Zn superoxide dismutase activity at different ages in sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 162: 34-37. https://doi.org/10.1016/S0022-510X(98)00272-X
  4. Pramatarova, A., D. A. Figlewicz, A. Krizus, F. Y. Han, P. I. Ceballos, A. Nicole, M. Dib, V. Meininger, and R. H. Brown (1995) Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 56: 592-596.
  5. Millecamps, S., F. Salachas, C. Cazeneuve, P. Gordan, B. Bricka, A. Camuzat, L. N. Guillot, O. Russaouen, G.. Bruneateau, P. F. Pradat, N. Le-Forestier, V. Danel-Brunaud, N. Guy, R. C. Thauvin, L. Lacomblez, P. Cauratier, D. Hannequin, D. Seilhean, I. Ler-Ber, P. Corcia, W. Camu, A. Brice, G. Rouleau, E. LeGuern, and V. Meininger (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: Genotype-phenotype correlations. J. Med. Genet. 47: 554-560. https://doi.org/10.1136/jmg.2010.077180
  6. Ross, C. A., and M. A. Poirier (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10: S10-17. https://doi.org/10.1038/nm1066
  7. Mackenzie, I. R., R. Rademakers, and M. Neumann (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet. Neurol. 9: 995-1007. https://doi.org/10.1016/S1474-4422(10)70195-2
  8. Lefebvre, S., L. Burglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165 https://doi.org/10.1016/0092-8674(95)90460-3
  9. Hanna, K. M., L. Tuovinen, S. Penttila, T. Suominen, B. Udd, and J. Palmio (2012) TARDBP mutations are not a frequent cause of ALS in Finnish patients. Acta. Myol. 31: 134-138.
  10. Snowden, J. S., S. Rollinson, J. C. Thompson, J. M. Harris, C. L. Stopford, A. M. Richardson, M. Jones, A. Gerhard, Y. S. Davidson, A. Robinson, L. Gibbons, Q. Hu, D. DuPlessis, D. Neary, D. M. Mann and S. M. Pickering-Brown (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135: 693-708. https://doi.org/10.1093/brain/awr355
  11. Talbot, K. (2002) Motor neurone disease. Postgrad. Med. J. 78: 513-519. https://doi.org/10.1136/pmj.78.923.513
  12. Siddharthan, C. and S. Andrea (2011) The use of stem cells in Motor Neurone Disease (MND), Adv. Clin. Neurosci. Rehabil. 11: 10-11.
  13. Oliveira, A. S. B. and R. D. B. Pereira (2009) Amyotrophic lateral sclerosis (ALS): Three letters that change the people's life. For ever. Arq. Neuropsiquiatr. 67: 750-782. https://doi.org/10.1590/S0004-282X2009000400040
  14. Henny, N., W. Shane, A. Michal, B. Shlomo, and Weil, Miguel (2012) Two potential biomarkers identified in mesenchymal stem cells and leukocytes of patients with sporadicamyotrophic lateral sclerosis. Dis. Markers 32: 211-220. https://doi.org/10.1155/2012/824692
  15. Hima, B. A. and B. Srilatha (2011) Potency of various types of stem cells and their transplantation. J. Stem Cell Res. Ther. 1: 115.
  16. Takahashi, K. and S. Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 4: 663-676.
  17. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872. https://doi.org/10.1016/j.cell.2007.11.019
  18. Paspala, S. A., A. B. Balaji, P. Nyamath, K. S. Ahmed, A. A. Khan, M. N. Khaja,M. L. Narsu, Y. P. Devi, T. V. Murthy, and C. M. Habibullah (2009) Neural stem cells & supporting cells-the new therapeutic tools for the treatment of spinal cord injury. Indian. J. Med. Res. 30: 379-391.
  19. Wichterle, H., I. Lieberam, J. A. Porter, and T. M. Jessell (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385-397. https://doi.org/10.1016/S0092-8674(02)00835-8
  20. Deshpande. D. M., Y. S. Kim, T. Martinez, J. Carmen, S. Dike, I. Shats, L. L. Rubin, J. Drummond, C. Krishnan, A. Hoke, N. Maragakis, J. Shefner, J. D. Rothstein, and D. A. Kerr (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann. Neurol. 60: 32-44. https://doi.org/10.1002/ana.20901
  21. Daadi, M. M., B. A. Grueter, R. C. Malenka, D. E. Redmond, and G. K. Steinberg (2012) Dopaminergic neurons from midbrainspecified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of parkinson's disease. PLoS ONE 7: e41120. https://doi.org/10.1371/journal.pone.0041120
  22. Svitlana, G. D., E. W. Alison, Z. Tanja, S. Saporta, B. J. Eleanor, J. C. Lane, J. E. Hudson, N. Chen, C. D. Davis, and P. R. Sanberg (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 12: 255-270. https://doi.org/10.1089/152581603322022990
  23. Garbuzova-Davis, S., M. C. O. Rodrigues, S. Mirtyl, S. Turner, S. Mitha, J. Sodhi, S. Suthakaran, D. J. Eve, C. D. Sanberg, N. N. Kuzmin, and P. R. Sanberg (2012) Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE 7: e31254. https://doi.org/10.1371/journal.pone.0031254
  24. Gonzalez-Garza, M. T., H. R. Martinez, E. Caro-Osorio, D. E. Cruz-Vega, M. Hernandez-Torre, and J. E. Moreno-Cuevas (2013) Differentiation of CD133+ stem cells from amyotrophic lateral sclerosis patients into preneuron cells. Stem Cells Transl. Med. 2: 129-135. https://doi.org/10.5966/sctm.2012-0077
  25. Corti, S., F. Locatelli, D. Papadimitriou, C. Donadoni, R. Del Bo, M. Crimi, A. Bordoni, F. Fortunato, S. Strazzer, G. Menozzi, S. Salani, N, Bresolin, and G. P. Comi (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum. Mol. Genet. 15: 167-187. https://doi.org/10.1093/hmg/ddi446
  26. Einstein, O. and T. Ben-Hur (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch. Neurol. 65: 452-456. https://doi.org/10.1001/archneur.65.4.452
  27. Hofstetter, C. P., J. P. Card, and L. A. Olson (2005) A spinal cord pathway connecting primary afferents to the segmental sympathetic outflow system. Exp. Neurol. 194: 128-138. https://doi.org/10.1016/j.expneurol.2005.01.028
  28. Ryu, M. Y., M. A. Lee, Y. H. Ahn, K. S. Kim, S. H. Yoon, E. Y. Snyder, K. G. Cho, S. U. Kim (2005) Brain transplantation of genetically modified neural stem cells in parkinsonian rat. Cell Transplant. 14: 193-202. https://doi.org/10.3727/000000005783983133
  29. Kim, S. U., I. H. Park, T. H. Kim, K. S. Kim, H. B. Choi, S. H. Hong, J. H. Bang, M. A. Lee, I. S. Joo, K. S. Lee, and K. S. Kim (2006) Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26: 129-140. https://doi.org/10.1111/j.1440-1789.2006.00688.x
  30. Kim, S. U. and J. de Vellis (2009) Stem cell-based cell therapy in neurological diseases: A review. J. Neurosci. Res. 87: 2183-2200. https://doi.org/10.1002/jnr.22054
  31. Lindvall, O. and Z. Kokaia (2010) Stem cells in human neurodegenerative disorders-time for clinical translation? J. Clin. Invest. 120: 29-40. https://doi.org/10.1172/JCI40543
  32. Gowing, G., and C. N. Svendsen (2011) Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics.8: 591-606. https://doi.org/10.1007/s13311-011-0068-7
  33. Benkler, C., D. Offen, E. Melamed, L. Kupershmidt, T. Amit, S. Mandel, M. B. H. Youdim, and O. Weinreb (2010) Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J. 2: 343-361.
  34. Suzuki, M., J. McHugh, C. Tork, B. Shelley, S. M. Klein, P. Aebischer, and C. N. Svendsen (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PloS One. 2: e689. https://doi.org/10.1371/journal.pone.0000689
  35. Corti, S., M. Nizzardo, M. Nardini, C. Donadoni, S. Salani, R. Del Bo, D. Papadimitriou, F. Locatelli, N. Mezzina, F. Gianni, N. Bresolin, G. P. Comi (2009) Motoneuron transplantation rescues the phenotype of SMARD1 (spinal muscular atrophy with respiratory distress type 1). J. Neurosci. 29: 11761-11771. https://doi.org/10.1523/JNEUROSCI.2734-09.2009
  36. Hwang, D. H., B. G. Kim, E. J. Kim, S. I. Lee, I. S. Joo, H. S. Kim, S. Sohn, and S. U. Kim (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 10: 117-132. https://doi.org/10.1186/1471-2202-10-117
  37. Henriques, A., C. Pitzer, and A. Schneider (2010) Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci. 4: 32-45.
  38. Yu, J., M. A. Vodyanik, O. K. Smuga, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J, Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science. 318: 1917-1920. https://doi.org/10.1126/science.1151526
  39. Park, I. H., R. Zhao, J. A. West, A. Yabuuchi, H. Huo, T. A. Inca, P. H. Lerou, M. W. Lensch, and G. Q. Daley (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451: 141-146. https://doi.org/10.1038/nature06534
  40. Alipio, Z., W. Liao, E. J. Roemer, M. Waner, L. M. Fink, D. C. Ward, and Y. Ma (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc. Natl. Acad. Sci. USA 107: 13426-13431. https://doi.org/10.1073/pnas.1007884107
  41. Hanna, J., M. Wernig, S. Markoulaki, C. W. Sun, A. Meissner, J. P. Cassady, C. Beard, T. Brambrink, L. C. Wu, T. M. Townes, and R. Jaenisch (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923. https://doi.org/10.1126/science.1152092
  42. Tsuji, O., K. Miura, Y. Okada, K. Fujiyoshi, M. Mukaino, N. Nagoshi, K. Kitamura, G, Kumagai, M. Nishino, S. Tomisato, H, Higashi, T, Nagai, H, Katoh, K. Kohda, Y. Matsuzaki, M. Yuzaki, E. Ikeda, Y. Toyama, M. Nakamura, S. Yamanaka, and H. Okano (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 107: 12704-12709. https://doi.org/10.1073/pnas.0910106107
  43. Wernig, M., J. P. Zhao, J. Pruszak, E. Hedlund, D. Fu, F. Soldner, V. Broccoli, M. Constantine-Paton, O. Isacson, and R. Jaenisch (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. USA 105(15): 5856-5861.
  44. Xu, D., Z. Alipio, L. M. Fink, D. M. Adcock, J. Yang, D. C. Ward, and Y. Ma (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. USA 106: 808-813. https://doi.org/10.1073/pnas.0812090106
  45. Egawa, N., S. Kitaoka, K. Tsukita, M. Naitoh, K. Takahashi, T. Yamamoto, F. Adachi, T. Kondo, K. Okita, I. Asaka, T. Aoi, A. Watanabe, Y. Yamada, A. Morizane, J. Takahashi, T. Ayaki, H. Ito, K, Yoshikawa, S. Yamawaki, S. Suzuki, D. Watanabe, H. Hioki, T. Kaneko, K. Makioka, K. Okamoto, H. Takuma, A. Tamaoka, K. Hasegawa, T. Nonaka, M. Hasegawa, A. Kawata, M. Yoshida, T. Nakahata, R. Takahashi, M.C. Marchetto, F. H. Gage, S. Yamanaka, and H. Inoue (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4: 145-153.
  46. Kelly, H. (2002) Ten problems with embryonic stem cell research. Acts & Facts. 31: 2-5.