Browse > Article
http://dx.doi.org/10.14348/molcells.2019.2439

Directed Differentiation of Pluripotent Stem Cells by Transcription Factors  

Oh, Yujeong (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
Jang, Jiwon (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used as promising tools for regenerative medicine, disease modeling, and drug screening. Traditional and common strategies for pluripotent stem cell (PSC) differentiation toward disease-relevant cell types depend on sequential treatment of signaling molecules identified based on knowledge of developmental biology. However, these strategies suffer from low purity, inefficiency, and time-consuming culture conditions. A growing body of recent research has shown efficient cell fate reprogramming by forced expression of single or multiple transcription factors. Here, we review transcription factor-directed differentiation methods of PSCs toward neural, muscle, liver, and pancreatic endocrine cells. Potential applications and limitations are also discussed in order to establish future directions of this technique for therapeutic purposes.
Keywords
differentiation; embryonic stem cell; pluripotent stem cell; transcription factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Miskinyte, G., Gr, M., Monni, E., Lam, M., Bengzon, J., Lindvall, O., Ahlenius, H., and Id, Z.K. (2018). Transcription factor programming of human ES cells generates functional neurons expressing both upper and deep layer cortical markers. PLoS One 13, e0204688.   DOI
2 Miyazaki, S., Yamato, E., and Miyazaki, J.I. (2004). Regulated expression of pdx-1 promotes in vitro differentiation of insulinproducing cells from embryonic stem cells. Diabetes 53, 1030-1037.   DOI
3 Nishiyama, A., Xin, L., Sharov, A.A., Thomas, M., Mowrer, G., Meyers, E., Piao, Y., Mehta, S., Yee, S., Nakatake, Y., et al. (2009). Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 5, 420-433.   DOI
4 Osafune, K., Caron, L., Borowiak, M., Martinez, R.J., Fitz-Gerald, C.S., Sato, Y., Cowan, C.A., Chien, K.R., and Melton, D.A. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313-315.   DOI
5 Ozasa, S., Kimura, S., Ito, K., Ueno, H., Ikezawa, M., Matsukura, M., Yoshioka, K., Araki, K., Yamamura, K. ich, Abe, K., et al. (2007). Efficient conversion of ES cells into myogenic lineage using the geneinducible system. Biochem. Biophys. Res. Commun. 357, 957-963.   DOI
6 Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Südhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223.   DOI
7 Raikwar, S.P., and Zavazava, N. (2012). PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant. Res. 9, 277.
8 Walczak, M.P., Drozd, A.M., Stoczynska-Fidelus, E., Rieske, P., and Grzela, D.P. (2016). Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J. Transl. Med. 14, 341.   DOI
9 Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. 86, 5434-5438.   DOI
10 Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397.   DOI
11 Wonders, C., and Anderson, S.A. (2005). Cortical interneurons and their origins. Neuroscientist 11, 199-205.   DOI
12 Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Hongguang, H., Loh, Y.H., Aryee, M.J., Lensch, M.W., et al. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117-1119.   DOI
13 Ionta, V., Liang, W., Kim, E.H., Rafie, R., Giacomello, A., Marban, E., and Cho, H.C. (2015). SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 4, 129-142.   DOI
14 Jin, Y., Liu, Y., Li, Z., Santostefano, K., Shi, J., Zhang, X., Wu, D., Cheng, Z., Wu, W., Terada, N., et al. (2018). Enhanced differentiation of human pluripotent stem cells into cardiomyocytes by bacteria-mediated transcription factors delivery. PLoS One 13, e0194895.   DOI
15 Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K., Toguchida, J., Uemoto, S., et al. (2012). Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109, 12538-12543.   DOI
16 Yamamizu, K., Piao, Y., Sharov, A.A., Zsiros, V., Yu, H., Nakazawa, K., Schlessinger, D., and Ko, M.S.H. (2013). Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 1, 545-559.   DOI
17 Wu, H., Xu, J., Pang, Z.P., Ge, W., Kim, K.J., Blanchi, B., Chen, C., Sudhof, T.C., and Sun, Y.E. (2007). Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc. Natl. Acad. Sci. 104, 13821-13826.   DOI
18 Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., Hawkins, R.D., Leung, D., et al. (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134-1148.   DOI
19 Xue, Y., Zhan, X., Sun, S., Karuppagounder, S.S., Xia, S., Dawson, V.L., Dawson, T.M., Laterra, J., Zhang, J., and Ying, M. (2018). Synthetic mRNAs drive highly efficient iPS cell differentiation to dopaminergic neurons. Stem Cells Transl. Med. 8, 112-123.   DOI
20 Koyanagi-Aoi, M., Ohnuki, M., Takahashi, K., Okita, K., Noma, H., Sawamura, Y., Teramoto, I., Narita, M., Sato, Y., Ichisaka, T., et al. (2013). Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc. Natl. Acad. Sci. USA 110, 20569-20574.   DOI
21 Kubo, A., Kim, Y.H., Irion, S., Kasuda, S., Takeuchi, M., Ohashi, K., Iwano, M., Dohi, Y., Saito, Y., Snodgrass, R., et al. (2010). The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Hepatology 51, 633-641.   DOI
22 Kubo, A., Stull, R., Takeuchi, M., Bonham, K., Gouon-Evans, V., Sho, M., Iwano, M., Saito, Y., Keller, G., and Snodgrass, R. (2011). Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population. PLoS One 6, e24058.   DOI
23 Takayama, K., Inamura, M., Kawabata, K., Katayama, K., Higuchi, M., Tashiro, K., Nonaka, A., Sakurai, F., Hayakawa, T., Kusuda Furue, M., et al. (2012a). Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4${\alpha}$ transduction. Mol. Ther. 20, 127-137.   DOI
24 Shiroi, A., Ueda, S., Ouji, Y., Saito, K., Moriya, K., Sugie, Y., Fukui, H., Ishizaka, S., and Yoshikawa, M. (2005). Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World J. Gastroenterol. 11, 4161-4166.   DOI
25 Akiyama, T., Wakabayashi, S., Soma, A., Sato, S., Nakatake, Y., Oda, M., Murakami, M., Sakota, M., Chikazawa-Nohtomi, N., Ko, S.B.H., et al. (2016). Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development 143, 3674-3685.   DOI
26 Albini, S., Coutinho, P., Malecova, B., Giordani, L., Savchenko, A., Forcales, S.V., and Puri, P.L. (2013). Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep. 3, 661-670.   DOI
27 Sun, A.X., Yuan, Q., Tan, S., Xiao, Y., Wang, D., Khoo, A.T.T., Sani, L., Tran, H.D., Kim, P., Chiew, Y.S., et al. (2016). Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Rep. 16, 1942-1953.   DOI
28 Tabar, V., and Studer, L. (2014). Pluripotent stem cells in regenerative medicine: Challenges and recent progress. Nat. Rev. Genet. 15, 82-92.   DOI
29 Takahashi, K., Yamanaka, S., Zhang, Y., Li, Y., Feng, C., Li, X., Lin, L., Guo, L., Wang, H., Liu, C., et al. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.   DOI
30 Takayama, K., Inamura, M., Kawabata, K., Tashiro, K., Katayama, K., Sakurai, F., Hayakawa, T., Furue, M.K., and Mizuguchi, H. (2011). Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One 6, e21780.   DOI
31 Takayama, K., Inamura, M., Kawabata, K., Sugawara, M., Kikuchi, K., Higuchi, M., Nagamoto, Y., Watanabe, H., Tashiro, K., Sakurai, F., et al. (2012b). Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1${\alpha}$ transduction. J. Hepatol. 57, 628-636.   DOI
32 Hu, B.Y., Weick, J.P., Yu, J., Ma, L.X., Zhang, X.Q., Thomson, J.A., and Zhang, S.C. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. 107, 4335-4340.   DOI
33 Goparaju, S.K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., Wakabayashi, S., Matsushita, M., Sakota, M., Kimura, H., et al. (2017). Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Sci. Rep. 7, 42367.   DOI
34 Goto, K., Imamura, K., Komatsu, K., Mitani, K., Aiba, K., Nakatsuji, N., Inoue, M., Kawata, A., Yamashita, H., Takahashi, R., et al. (2017). Simple derivation of spinal motor neurons from ESCs/iPSCs using sendai virus vectors. Mol. Ther. Methods Clin. Dev. 4, 115-125.   DOI
35 Hester, M.E., Murtha, M.J., Song, S., Rao, M., Miranda, C.J., Meyer, K., Tian, J., Boulting, G., Schaffer, D.V., Zhu, M.X., et al. (2011). Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol. Ther. 19, 1905-1912.   DOI
36 Bai, F., Ho Lim, C., Jia, J., Santostefano, K., Simmons, C., Kasahara, H., Wu, W., Terada, N., and Jin, S. (2015). Directed differentiation of embryonic stem cells into cardiomyocytes by bacterial injection of defined transcription factors. Sci. Rep. 5, 15014.   DOI
37 Yang, N., Chanda, S., Marro, S., Ng, Y.H., Janas, J.A., Haag, D., Ang, C.E., Tang, Y., Flores, Q., Mall, M., et al. (2017). Generation of pure GABAergic neurons by transcription factor programming. Nat. Methods 14, 621-628.   DOI
38 Zhang, Y., Pak, C.H., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785-798.   DOI
39 Ida, H., Akiyama, T., Ishiguro, K., Goparaju, S.K., Nakatake, Y., Chikazawa-nohtomi, N., Sato, S., Kimura, H., Yokoyama, Y., Nagino, M., et al. (2018). Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors. Stem Cell Res. Ther. 9, 277.   DOI
40 Inamura, M., Kawabata, K., Takayama, K., Tashiro, K., Sakurai, F., Katayama, K., Toyoda, M., Akutsu, H., Miyagawa, Y., Okita, H., et al. (2011). Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol. Ther. 19, 400-407.   DOI
41 Bernardo, A.S., Cho, C.H.H., Mason, S., Docherty, H.M., Pedersen, R.A., Vallier, L., and Docherty, K. (2009). Biphasic induction of Pdx1 in mouse and human embryonic stem cells can mimic development of pancreatic ${\beta}$-cells. Stem Cells 27, 341-351.   DOI
42 Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., and Wobus, A.M. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulinproducing cells. Proc. Natl. Acad. Sci. USA 100, 998-1003.   DOI
43 Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., Amoroso, M.W., Oakley, D.H., et al. (2011). Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439-452.   DOI
44 Busskamp, V., Lewis, N.E., Guye, P., Ng, A.H., Shipman, S.L., Byrne, S.M., Sanjana, N.E., Murn, J., Li, Y., Li, S., et al. (2014). Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760.   DOI
45 Liew, C.G., Shah, N.N., Briston, S.J., Shepherd, R.M., Khoo, C.P., Dunne, M.J., Moore, H.D., Cosgrove, K.E., and Andrews, P.W. (2008). PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS One 3, e1783.   DOI
46 Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J., and Srivastava, D. (2009). A regulatory pathway involving Notch1/${\beta}$-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 11, 951-957.   DOI
47 Lee, S., Cuvillier, J.M., Lee, B., Shen, R., Lee, J.W., and Lee, S.K. (2012). Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. Proc. Natl. Acad. Sci. 109, 3383-3388.   DOI
48 Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280.   DOI
49 Chanda, S., Ang, C.E., Davila, J., Pak, C., Mall, M., Lee, Q.Y., Ahlenius, H., Jung, S.W., Südhof, T.C., and Wernig, M. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports 3, 282-296.   DOI
50 Li, X.J., Du, Z.W., Zarnowska, E.D., Pankratz, M., Hansen, L.O., Pearce, R.A., and Zhang, S.C. (2005). Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215-221.   DOI
51 Lin, H.T., Kao, C.L., Lee, K.H., Chang, Y.L., Chiou, S.H., Tsai, F.T., Tsai, T.H., Sheu, D.C., Ho, L.L.T., and Ku, H.H. (2007). Enhancement of insulin-producing cell differentiation from embryonic stem cells using pax4-nucleofection method. World J. Gastroenterol. 13, 1672-1679.   DOI
52 Matsushita, M., Nakatake, Y., Arai, I., Ibata, K., Kohda, K., Goparaju, S.K., Murakami, M., Sakota, M., Chikazawa-Nohtomi, N., Ko, S.B.H., et al. (2017). Neural differentiation of human embryonic stem cells induced by the transgene-mediated overexpression of single transcription factors. Biochem. Biophys. Res. Commun. 490, 296-301.   DOI
53 Mercuri, E., Muntoni, F., Emery, A., Mercuri, E., Muntoni, F., Guglieri, M., Straub, V., Bushby, K., Lochmuller, H., Bushby, K., et al. (2013). Muscular dystrophies. Lancet (London, England) 381, 845-860.   DOI
54 Thoma, E.C., Wischmeyer, E., Offen, N., Maurus, K., Siren, A.L., Schartl, M., and Wagner, T.U. (2012). Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS One 7, e38651.   DOI
55 Tanaka, A., Woltjen, K., Miyake, K., Hotta, A., Ikeya, M., Yamamoto, T., Nishino, T., Shoji, E., Sehara-Fujisawa, A., Manabe, Y., et al. (2013). Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling miyoshi myopathy in vitro. PLoS One 8, e61540.   DOI
56 Tao, Y., and Zhang, S.C. (2016). Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19, 573-586.   DOI
57 Theka, I., Caiazzo, M., Dvoretskova, E., Leo, D., Ungaro, F., Curreli, S., Manago, F., Dell'Anno, M.T., Pezzoli, G., Gainetdinov, R.R., et al. (2013). Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl. Med. 2, 473-479.   DOI
58 Tomizawa, M., Shinozaki, F., Motoyoshi, Y., Sugiyama, T., Yamamoto, S., and Ishige, N. (2016). Transcription factors and medium suitable for initiating the differentiation of human-induced pluripotent stem cells to the hepatocyte lineage. J. Cell. Biochem. 117, 2001-2009.   DOI
59 Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Südhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.   DOI
60 Van, H.D., D'Amour, K.A., German, M.S., and Van Hoof, D. (2009). Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res. 3, 73-87.   DOI
61 Darabi, R., Arpke, R.W., Irion, S., Dimos, J.T., Grskovic, M., Kyba, M., and Perlingeiro, R.C.R. (2012). Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10, 610-619.   DOI
62 Correa-Cerro, L.S., Piao, Y., Sharov, A.A., Nishiyama, A., Cadet, J.S., Yu, H., Sharova, L. V., Xin, L., Hoang, H.G., Thomas, M., et al. (2011). Generation of mouse ES cell lines engineered for the forced induction of transcription factors. Sci. Rep. 1, 167.   DOI
63 Darabi, R., Gehlbach, K., Bachoo, R.M., Kamath, S., Osawa, M., Kamm, K.E., Kyba, M., and Perlingeiro, R.C.R. (2008). Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med. 14, 134-143.   DOI
64 Darabi, R., Santos, F.N.C., Filareto, A., Pan, W., Koene, R., Rudnicki, M.A., Kyba, M., and Perlingeiro, R.C.R. (2011). Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29, 777-790.   DOI
65 Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.   DOI
66 Fonoudi, H., Yeganeh, M., Fattahi, F., Ghazizadeh, Z., Rassouli, H., Alikhani, M., Mojarad, B.A., Baharvand, H., Salekdeh, G.H., and Aghdami, N. (2013). ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells. PLoS One 8, e55577.   DOI
67 Dekel, I., Magal, Y., Pearson-White, S., Emerson, C.P., and Shani, M. (1992). Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biol. 4, 217-224.