Browse > Article
http://dx.doi.org/10.7841/ksbbj.2013.28.5.269

Motor Neuron Disease and Stem Cell Approach for Its Remediation  

Kim, Jong Deog (Research Center on Anti-Obesity and Health Care (RCAOHC), Chonnam National University)
Bhardwaj, Jyoti (Department of Biotechnology, Chonnam National University)
Chaudhary, Narendra (Department of Biotechnology, Chonnam National University)
Seo, Hyo Jin (Department of Biotechnology, Chonnam National University)
Publication Information
KSBB Journal / v.28, no.5, 2013 , pp. 269-274 More about this Journal
Abstract
Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.
Keywords
Embryonic stem cells; Induced pluripotent stem cells; Motor neuron diseases; Neural stem cells; Superoxide dismutase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kanning, K. C., A. Kaplan, and C. E. Henderson (2010) Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 3: 409-440.
2 Bradley, W. (1996) Overview of motor neuron disease: classification and nomenclature. Clin. Neurosci. 3: 323-326.
3 Fiszman, M. L., L. N. Borodinsky, K. C. Ricart, O. P. Sanz, and R. E. Sica (1999) Cu/Zn superoxide dismutase activity at different ages in sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 162: 34-37.   DOI   ScienceOn
4 Pramatarova, A., D. A. Figlewicz, A. Krizus, F. Y. Han, P. I. Ceballos, A. Nicole, M. Dib, V. Meininger, and R. H. Brown (1995) Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 56: 592-596.
5 Millecamps, S., F. Salachas, C. Cazeneuve, P. Gordan, B. Bricka, A. Camuzat, L. N. Guillot, O. Russaouen, G.. Bruneateau, P. F. Pradat, N. Le-Forestier, V. Danel-Brunaud, N. Guy, R. C. Thauvin, L. Lacomblez, P. Cauratier, D. Hannequin, D. Seilhean, I. Ler-Ber, P. Corcia, W. Camu, A. Brice, G. Rouleau, E. LeGuern, and V. Meininger (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: Genotype-phenotype correlations. J. Med. Genet. 47: 554-560.   DOI
6 Ross, C. A., and M. A. Poirier (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10: S10-17.   DOI   ScienceOn
7 Mackenzie, I. R., R. Rademakers, and M. Neumann (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet. Neurol. 9: 995-1007.   DOI   ScienceOn
8 Lefebvre, S., L. Burglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165   DOI   ScienceOn
9 Hanna, K. M., L. Tuovinen, S. Penttila, T. Suominen, B. Udd, and J. Palmio (2012) TARDBP mutations are not a frequent cause of ALS in Finnish patients. Acta. Myol. 31: 134-138.
10 Snowden, J. S., S. Rollinson, J. C. Thompson, J. M. Harris, C. L. Stopford, A. M. Richardson, M. Jones, A. Gerhard, Y. S. Davidson, A. Robinson, L. Gibbons, Q. Hu, D. DuPlessis, D. Neary, D. M. Mann and S. M. Pickering-Brown (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135: 693-708.   DOI
11 Talbot, K. (2002) Motor neurone disease. Postgrad. Med. J. 78: 513-519.   DOI
12 Siddharthan, C. and S. Andrea (2011) The use of stem cells in Motor Neurone Disease (MND), Adv. Clin. Neurosci. Rehabil. 11: 10-11.
13 Oliveira, A. S. B. and R. D. B. Pereira (2009) Amyotrophic lateral sclerosis (ALS): Three letters that change the people's life. For ever. Arq. Neuropsiquiatr. 67: 750-782.   DOI
14 Henny, N., W. Shane, A. Michal, B. Shlomo, and Weil, Miguel (2012) Two potential biomarkers identified in mesenchymal stem cells and leukocytes of patients with sporadicamyotrophic lateral sclerosis. Dis. Markers 32: 211-220.   DOI
15 Hima, B. A. and B. Srilatha (2011) Potency of various types of stem cells and their transplantation. J. Stem Cell Res. Ther. 1: 115.
16 Wichterle, H., I. Lieberam, J. A. Porter, and T. M. Jessell (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385-397.   DOI   ScienceOn
17 Takahashi, K. and S. Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 4: 663-676.
18 Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.   DOI   ScienceOn
19 Paspala, S. A., A. B. Balaji, P. Nyamath, K. S. Ahmed, A. A. Khan, M. N. Khaja,M. L. Narsu, Y. P. Devi, T. V. Murthy, and C. M. Habibullah (2009) Neural stem cells & supporting cells-the new therapeutic tools for the treatment of spinal cord injury. Indian. J. Med. Res. 30: 379-391.
20 Deshpande. D. M., Y. S. Kim, T. Martinez, J. Carmen, S. Dike, I. Shats, L. L. Rubin, J. Drummond, C. Krishnan, A. Hoke, N. Maragakis, J. Shefner, J. D. Rothstein, and D. A. Kerr (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann. Neurol. 60: 32-44.   DOI   ScienceOn
21 Daadi, M. M., B. A. Grueter, R. C. Malenka, D. E. Redmond, and G. K. Steinberg (2012) Dopaminergic neurons from midbrainspecified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of parkinson's disease. PLoS ONE 7: e41120.   DOI
22 Svitlana, G. D., E. W. Alison, Z. Tanja, S. Saporta, B. J. Eleanor, J. C. Lane, J. E. Hudson, N. Chen, C. D. Davis, and P. R. Sanberg (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 12: 255-270.   DOI   ScienceOn
23 Garbuzova-Davis, S., M. C. O. Rodrigues, S. Mirtyl, S. Turner, S. Mitha, J. Sodhi, S. Suthakaran, D. J. Eve, C. D. Sanberg, N. N. Kuzmin, and P. R. Sanberg (2012) Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE 7: e31254.   DOI
24 Hofstetter, C. P., J. P. Card, and L. A. Olson (2005) A spinal cord pathway connecting primary afferents to the segmental sympathetic outflow system. Exp. Neurol. 194: 128-138.   DOI   ScienceOn
25 Gonzalez-Garza, M. T., H. R. Martinez, E. Caro-Osorio, D. E. Cruz-Vega, M. Hernandez-Torre, and J. E. Moreno-Cuevas (2013) Differentiation of CD133+ stem cells from amyotrophic lateral sclerosis patients into preneuron cells. Stem Cells Transl. Med. 2: 129-135.   DOI
26 Corti, S., F. Locatelli, D. Papadimitriou, C. Donadoni, R. Del Bo, M. Crimi, A. Bordoni, F. Fortunato, S. Strazzer, G. Menozzi, S. Salani, N, Bresolin, and G. P. Comi (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum. Mol. Genet. 15: 167-187.   DOI
27 Einstein, O. and T. Ben-Hur (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch. Neurol. 65: 452-456.   DOI   ScienceOn
28 Ryu, M. Y., M. A. Lee, Y. H. Ahn, K. S. Kim, S. H. Yoon, E. Y. Snyder, K. G. Cho, S. U. Kim (2005) Brain transplantation of genetically modified neural stem cells in parkinsonian rat. Cell Transplant. 14: 193-202.   DOI   ScienceOn
29 Kim, S. U., I. H. Park, T. H. Kim, K. S. Kim, H. B. Choi, S. H. Hong, J. H. Bang, M. A. Lee, I. S. Joo, K. S. Lee, and K. S. Kim (2006) Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26: 129-140.   DOI   ScienceOn
30 Kim, S. U. and J. de Vellis (2009) Stem cell-based cell therapy in neurological diseases: A review. J. Neurosci. Res. 87: 2183-2200.   DOI   ScienceOn
31 Lindvall, O. and Z. Kokaia (2010) Stem cells in human neurodegenerative disorders-time for clinical translation? J. Clin. Invest. 120: 29-40.   DOI   ScienceOn
32 Corti, S., M. Nizzardo, M. Nardini, C. Donadoni, S. Salani, R. Del Bo, D. Papadimitriou, F. Locatelli, N. Mezzina, F. Gianni, N. Bresolin, G. P. Comi (2009) Motoneuron transplantation rescues the phenotype of SMARD1 (spinal muscular atrophy with respiratory distress type 1). J. Neurosci. 29: 11761-11771.   DOI   ScienceOn
33 Gowing, G., and C. N. Svendsen (2011) Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics.8: 591-606.   DOI
34 Benkler, C., D. Offen, E. Melamed, L. Kupershmidt, T. Amit, S. Mandel, M. B. H. Youdim, and O. Weinreb (2010) Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J. 2: 343-361.
35 Suzuki, M., J. McHugh, C. Tork, B. Shelley, S. M. Klein, P. Aebischer, and C. N. Svendsen (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PloS One. 2: e689.   DOI
36 Hwang, D. H., B. G. Kim, E. J. Kim, S. I. Lee, I. S. Joo, H. S. Kim, S. Sohn, and S. U. Kim (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 10: 117-132.   DOI   ScienceOn
37 Henriques, A., C. Pitzer, and A. Schneider (2010) Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci. 4: 32-45.
38 Yu, J., M. A. Vodyanik, O. K. Smuga, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J, Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science. 318: 1917-1920.   DOI   ScienceOn
39 Park, I. H., R. Zhao, J. A. West, A. Yabuuchi, H. Huo, T. A. Inca, P. H. Lerou, M. W. Lensch, and G. Q. Daley (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451: 141-146.   DOI   ScienceOn
40 Alipio, Z., W. Liao, E. J. Roemer, M. Waner, L. M. Fink, D. C. Ward, and Y. Ma (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc. Natl. Acad. Sci. USA 107: 13426-13431.   DOI   ScienceOn
41 Hanna, J., M. Wernig, S. Markoulaki, C. W. Sun, A. Meissner, J. P. Cassady, C. Beard, T. Brambrink, L. C. Wu, T. M. Townes, and R. Jaenisch (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923.   DOI   ScienceOn
42 Tsuji, O., K. Miura, Y. Okada, K. Fujiyoshi, M. Mukaino, N. Nagoshi, K. Kitamura, G, Kumagai, M. Nishino, S. Tomisato, H, Higashi, T, Nagai, H, Katoh, K. Kohda, Y. Matsuzaki, M. Yuzaki, E. Ikeda, Y. Toyama, M. Nakamura, S. Yamanaka, and H. Okano (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 107: 12704-12709.   DOI   ScienceOn
43 Wernig, M., J. P. Zhao, J. Pruszak, E. Hedlund, D. Fu, F. Soldner, V. Broccoli, M. Constantine-Paton, O. Isacson, and R. Jaenisch (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. USA 105(15): 5856-5861.
44 Xu, D., Z. Alipio, L. M. Fink, D. M. Adcock, J. Yang, D. C. Ward, and Y. Ma (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. USA 106: 808-813.   DOI   ScienceOn
45 Egawa, N., S. Kitaoka, K. Tsukita, M. Naitoh, K. Takahashi, T. Yamamoto, F. Adachi, T. Kondo, K. Okita, I. Asaka, T. Aoi, A. Watanabe, Y. Yamada, A. Morizane, J. Takahashi, T. Ayaki, H. Ito, K, Yoshikawa, S. Yamawaki, S. Suzuki, D. Watanabe, H. Hioki, T. Kaneko, K. Makioka, K. Okamoto, H. Takuma, A. Tamaoka, K. Hasegawa, T. Nonaka, M. Hasegawa, A. Kawata, M. Yoshida, T. Nakahata, R. Takahashi, M.C. Marchetto, F. H. Gage, S. Yamanaka, and H. Inoue (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4: 145-153.
46 Kelly, H. (2002) Ten problems with embryonic stem cell research. Acts & Facts. 31: 2-5.