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The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision 
medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs 
retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using 
a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology 
to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. 
For instance, Parkinson’s disease, Alzheimer’s disease, and spinal cord injuries may be treated with iPSC therapy or replacement 
tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on 
recent advances in the use of human iPSCs in clinical setting. 
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INTRODUCTION

Stem cells exhibit the capacity of self-renewal and may un-

dergo differentiation into various tissue types. These are di-

vided into pluripotent stem cells (PSCs; embryonic stem cells 

[ESCs] and induced pluripotent stem cells [iPSCs]) and multi-

potent stem cells (adult stem cells [ASCs]) based on their dif-

ferentiation capacity45). PSCs, including ESCs derived from 

embryos and iPSCs derived by gene transfer, may undergo in-

definite proliferation and differentiate into different types of 

tissues depending on the treatment conditions86). Multipotent 

stem cells, however, may be obtained from tissue-derived pre-

cursors (umbilical cord blood, bone marrow, adipose tissue, 

placenta, or blood), which are already grown tissues. Multipo-

tent stem cells have only lineage-committed differentiation 

potential and may produce some cell types found within the 

particular tissue of origin (Fig. 1)27,45,86).

Of these stem cell types, iPSCs are derived from somatic 

cells by gene transfer in the presence of reprogramming fac-

tors. iPSCs face less ethical controversies than ESCs and are 

available for the development of new clinical applications and 

extending stem cell research to clinical setting43,66,76,78). Scien-

tific investigations involving iPSCs in developmental biology, 

pharmaco-toxicology, and molecular biology have been accel-
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erated by novel technologies aimed specifically to improve 

iPSC generation, growth, modif ication, and monitor-

ing3,10,74,77). At present, PSCs research has rapidly evolved to of-

fer the possibility of replacing regenerated and non-regenerat-

ed tissues, including the heart, pancreas, and brain, and 

provide various cell types37,90,96,97). In particular, the field of re-

generative neuroscience is very active and has already reached 

a clinical trial stages24,37,53,63,94). The following sections discuss 

the main stem cell types and sources used in research and 

clinical trials along with their applications. 

CELL TYPES AND SOURCES

Human ESCs
Human ESCs are self-renewing pluripotent cells, and may 

produce cells from the three germ layers. These cells are de-

rived from the donated embryos either from in vitro fertiliza-

tion procedure or created by somatic cell nuclear transfer 

technique (Table 1). ESCs or the cells of the embryo that have 

not undergone modification for less than 14 days are called 

“omnipotent cells” or “pluripotent cells” owing to their ability 

to differentiate into all cell and tissue types that make up the 

Table 1. Type of stem cells based on their di�erentiation capacities

Differentiation capacity Isolated cells Origins & methods Advantages Disadvantages

Pluripotency ESCs 1. Blastocyst; inner cell mass
2. Somatic cell nuclear 

transfer (SCNT)

● Differentiation into three germ 
layers

● Self-renewal and high replication
● Approved by US FDA

● Immunological concerns
● Ethical debate
● Potential for teratoma

iPSCs Reprogramming of somatic 
cells by gene transfer

● Less ethical concerns than ESCs
● Patient-specific
● Autologus

● Need method standardization
● Potential for teratoma
● Validation for safety

Multipotency ASCs Bone marrow, adipose tissue, 
umblical cord, amniotic 
fluid, placenta, CNS

● Less ethical concerns than ESCs 
and IPSCs

● Less cell proliferation 
● Limit differentiation potencial

ESCs : embryonic stem cells, US FDA : United States Food and Drug Administration, iPSCs : induced pluripotent stem cells, ASCs : adult stem cells, CNS : 
central nervous system

Fig. 1. Isolation and characterization of pluripotent stem cells. ESC : embryonic stem cell, ICM : inner cell mass, iPSC : induced pluripotent stem cell, ASC : 
adult stem cell, CNS : central nervous system.

ESCs
Isolate cells from ICM

Endoderm EndodermMesoderm MesodermEctooderm Ectooderm

Umbilical cord blood

Bone marrow

Adipose tissue

Placenta
Skin fibroblasts

Viral transfection CNS

Lineage-committed differentiation

iPSCs

ASCs

ESCs

ASCs
Tissue-derived circulating precursors

iPSCs
Isolate and amplify somatic cells

Cell therapy & disease modeling

Enhanced perfusion and tissue function; 
supports cell therapy → paracrine effects



  Human Induced Pluripotent Stem Cells | Chang EA, et al.

495J Korean Neurosurg Soc 62 (5) : 493-501

human body. In other words, these cells have the infinite abil-

ity to differentiate into all types of cells of the body45,81,86). 

Prior to 1998, scientists encountered difficulties in the isola-

tion and cultivation of stem cells, as these cells present very 

short time during embryonic development and require special 

devices for their isolation from embryos. In 1998, however, a 

team of researchers led by Dr. James Thomson at the Univer-

sity of Wisconsin succeeded in isolating cells from the inner 

cell mass of blastocyst and cultivating human ESCs in a 

dish81). Therefore, ESCs have greatly contributed to develop-

mental biology and medicine. For instance, ESCs have facili-

tated the development of insulin-producing cells to treat dia-

betes96,98) or generation of neurons that can restore the 

function of patients paralyzed with spinal cord injuries16,20). 

Many groups have demonstrated successful transplantation, 

survival, and differentiation of ESCs into neural cells in ro-

dent models8,13,18,93). In 2010, human ESC-derived oligoden-

drocyte progenitors were generated by Geron Corporation 

and a first-ever clinical trial involving patients with spinal 

cord injury (SCI) was performed2,75). Advanced Cell Technol-

ogy also reported a clinical trial using human ESC-derived 

retinal pigment epithelium to treat dry age-related macular 

degeneration in 201272). Despite these advantages, embryonic 

cells obtained from the fusion of sperm and egg may cause se-

vere immune rejection when used in patient with DNA from 

allogenic embryonic cells which was not autologus5,12). In ad-

dition, the use of human embryos may encounter ethical is-

sues, which limit research and clinical applications. Therefore, 

it is necessary to develop new pluripotent cells that circumvent 

ethical or immunological problems45,86).

ASCs
ASCs are tissue-specific stem cells characterized with tissue-

restricted differentiation. These cells have multipotency char-

acteristics but lose pluripotency. ASCs are derived from the 

umbilical cord blood, bone marrow, adipose tissue, placenta, 

blood, or brain without direct use of embryo. These are primi-

tive cells isolated just before undergoing differentiation into 

specific organs such as the bone, fat, cartilage, neuron, and 

blood. These include hematopoietic stem cells (HSCs), mesen-

chymal stem cells (MSCs), and neural stem cells (NSCs), all of 

which have become an important source for regenerative 

medicine27,45).

The umbilical cord blood and bone marrow contain large 

number of HSCs and MSCs, including stromal cells. Adipose 

tissue is a source of MSCs, which have the potential to differen-

tiate into blood cells, bone, fat, and cartilage17,30). NSCs may be 

obtained from several regions of the fetal, postnatal, and adult 

central nervous system, including the subventricular zone of 

the brain and the spinal cord that may contain precursors for 

neurons, oligodendrocytes, and astrocytes38,46,64).

ASCs have been extensively studied and are being tested in 

clinical trials for various diseases, including SCI16,17,30). One of 

the important functions of ASCs is their anti-inflammatory 

and immunomodulatory effects and their ability to secret sev-

eral neurotrophic factors; hence, ASCs may provide trophic 

support for endogenous and co-implanted cells7,14,15,47). In ad-

dition, ASCs offer the advantage of avoiding less ethical debate 

than ESCs because these cells are isolated from the already-

grown body tissues. However, ASCs tend to be difficult to 

proliferate and differentiate; hence, obtaining a desired cell 

shape or sufficient number of cells may be challenging17,27,30).

iPSCs
iPSCs were first developed by Yamanaka in 2006 using 

mice78); human iPSCs were subsequently established in 200776). 

Since then, other researchers have developed human iPSCs 

and confirmed the reproducibility of the Yamanaka’s research 

technique, a globally approved technology42,44,58,92). iPSCs are 

derived from somatic cells of the adult body through the ex-

pression of specific exogenous genes or proteins and resemble 

ESCs morphologically, antigenically, and phenotypically in 

many ways. iPSCs have the following similarities as compared 

to ESCs derived from blastocysts45,74,77,86) : 1) the shape of the 

cell (round shape, large nucleus, and phosphorus, little cyto-

plasm) and the speed of growth are similar. 2) Gene expres-

sion and chromatin modification patterns are similar. 3) It 

may form teratoma in immunodeficient mice. 4) It produces 

chimera mouse upon insertion into a mouse blastocyst. And 

5) germ line transmission of genes is possible.

Unlike ESCs, iPSCs have been generated from the tissues 

with somatic cells, such as the skin, dental tissue, peripheral 

blood, and urine. Thus, generation of iPSCs showed less ethi-

cal problems than ESCs and offers the advantage of custom-

ized treatment using the somatic cells of the patient with char-

acteristics same as ESCs9,19,25,80,82,90).

Yamanaka’s team successfully induced pluripotency in 

adult somatic cells using four retrovirally transfected tran-
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scription factors, namely, Octamer 3/4 (Oct3/4), SRY-box con-

taining gene 2 (Sox2), Krüppel-like factor 4 (Klf4), and the 

protooncogene cytoplasmic Myc protein (c-Myc), in fibro-

blasts (Fig. 2)76,78). However, the retroviral infection technology 

that delivers each of the “Yamanaka factors” (Oct3/4, Sox2, 

Klf4, and c-Myc; reprogramming factors; first generation 

method) has two disadvantages for clinical applications. First, 

genomic integration of reprogramming factors may lead to 

unwanted effects such as tumorigenesis5,25,55). Second, this 

technology may lead to impairment of pluripotency. Repro-

gramming factors are required to establish pluripotency, but 

continual activation of exogenous reprogramming factors 

may decrease the differentiation capacity into specific cell 

types or transform cells altogether44,92).

Therefore, alternative induction methods have been intro-

duced to avoid direct alterations of host cell DNA. The pluri-

potency genes either remain separate from the host genome or 

may be completely removable21,80). For instance, to involve the 

transient expression of reprogramming factors or virus-free, 

using adenoviruses99), plasmids54), minicircle vectors50), epi-

somal vectors61,91), Sendai viruses29,87), synthetic mRNAs84) or 

recombinant proteins95) were developed (Fig. 3). iPSC repro-

gramming technology has been recently introduced to im-

prove safety and increase efficiency through chemical ap-

proaches with small molecules39,41). This new generation 

protocol may help achieve more controllable reprogramming 

than that induced by transcription factors. These advance-

ments have enabled the use of iPSCs for therapeutic purpos-

es9,40,43,63,90).

Many research groups have studied the differentiation po-

tential of iPSCs into three germ layers in humans for clinical 

applications3,11,37,90,96). Human iPSCs use the same transcrip-

tion network as ESCs, with similar early cell fate control 

mechanisms45,86). For clinical applications, many specific lin-

eage-committed cell types are required for cell therapy; these 

may be generated through good manufacturing practice con-

ditions82). The production of specific cell subtypes for therapy 

may necessitate specific culture conditions. These differences 

between the trophic responses in vitro and in vivo pose major 

challenges to the clinical translation of preclinical iPSC stud-

ies43,66,74).

iPSCs may be used for the following applications : 1) devel-

opment of disease-specific autologous cell therapy, 2) disease 

models to evaluate underlying mechanisms, and 3) drug 

screening and toxicity tests33,43,53,66,74,97). However, as the history 

of iPSC research is short, the studies must be adequately veri-

fied to confirm the safe application of these cells for cell thera-

Fig. 2. Generation and applications of iPSCs from somatic cells. iPSCs can be applied in the �eld of clinical research for 1) patient-speci�c cell therapy, 
2) drug screening, and 3) disease modeling. iPSC : induced pluripotent stem cell, Oct4 : octamer-binding transcription factor 4, Klf4 : Krüppel-like factor 
4, Sox2 : SRY-box containing gene 2, c-Myc : cytoplasmic Myc gene.
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Fig. 3. Safety of cell reprogramming technologies.
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py. In addition, human iPSCs derived from the somatic tissue 

of living donors and human tissue harvesting require exten-

sive ethical and legal considerations regarding the dissemina-

tion of results and potential commercial benefit to donors for 

clinical translation53,97); hence, standard regulations and poli-

cies need to be established.

THERAPEUTIC POTENTIAL OF INDUCED PLU-
RIPOTENT STEM CELLS IN NEUROLOGIC DIS-
EASES

The use of iPSCs for clinical applications requires the avoid-

ance of genetic vectors or transgenes, which pose unknown 

risks in humans. In recent years, commercial stem cell re-

search laboratories focus on using Sendai virus or episomal 

reprogramming instead of transgenes29,61,87,89,91). Several differ-

ent sources and types of cells have been extensively evaluated 

in basic science and at preclinical stage for neurologic diseas-

es1,23,49,52,63,67,94). Dopaminergic neurons derived from non-hu-

man primate iPSCs have been successfully used to cure Par-

kinson’s disease24). The generation of iPSC models from 

familial cases of Parkinson’s disease has greatly contributed to 

defining several molecular mechanisms related to disease pro-

gression68,69). Another example is stem cell transplantation for 

SCI that offers promising therapeutic strategies to address the 

multifactorial nature of SCI34,49,52,67,73,88). Transplanted neuro-

spheres from human iPSCs into SCI mouse models were suc-

cessful and showed no tumorigenesis49,52). In addition, safe and 

effective engraftment of human iPSC-derived neural progeni-

tor cells for SCI therapy has been confirmed in non-human 

primates34). In patients with Alzheimer’s disease, new potential 

diagnostic and therapeutic targets may be identified through 

the generation of iPSCs derived from patients with sporadic or 

familial Alzheimer's disease (AD)19,28,36,62,85). Therefore, it may 

be important to evaluate the pathophysiology of AD and ther-

apeutic effects of patient-derived iPSCs in the original patient. 

Generation of iPSCs from patients with neurologic diseases 

and their subsequent differentiation into neural lineages sup-

port the important information about molecular alterations 

in diseases and pave the way to potentially use these cells for 

regenerative medicine63).

COMBINATION WITH NEW CULTURE TECHNOL-
OGIES FOR CELL THERAPY

Advances in stem cell technology allow ESCs and iPSCs to 

exhibit unlimited proliferation properties, and the result-

ing cell differentiation reflects key structural and functional 

properties of organs such as the kidney, lung, gut, brain, and 

heart26,37,48,56). During development, cell morphology and 

physiology undergo changes in terms of a wide variety of fac-

tors, and the culture environment plays a fundamental role in 

the growth of cells in cultures. Researchers started with two-

dimensional (2D) approach by growing sheets of cells, but the 

use of three dimensional (3D) techniques or nano-topogra-

phy31,59) such as culturing cells on 3D scaffolds (organoids) or 

Nano-Petri dishes is now common. 3D culture techniques 

with stem cells may provide various different type of organ-

oids, and highlight information on the pathophysiology of 

diseases and the possible implications of therapy in clinical 

setting23,40,57). In particular, organoid tissue culture may serve 

as a useful tool for modeling neurodevelopmental disorders 

such as microencephaly related with the exposure of Zika vi-

rus65,79), as would nanopatterned scaffolds for neural tissue en-

gineering60). Recent progress in stem cell biology, combined 

with basic knowledge of brain development, has led to a 3D 

culture method that recapitulates brain development in vitro. 

Human PSCs-derived 3D structures, referred to as ‘brain or-

ganoids’, have the potential to shed light on key aspects of de-

velopment, moreover, patient-derived brain organoid may 

predict drug response in a personalized fashion71). As a new 

technology, 3D bioprinting allows creation of a precisely con-

trolled 3D tissue or organ through evaluation of cell localiza-

tion with biomolecules that are almost similar to tissue-spe-

cific extracellular microenvironment22,32). Thus, the synergism 

of stem cell biology and 3D-biomaterial technology being in-

fluential in iPSC-based research and translation. Recent ad-

vances in bio-inks, printable hydrogels that encapsulate living 

cells, have improved the outcome of 3D tissue/organ printing 

constructs. For instance, 3D bio-printed cardiac patches, ar-

ticular bones and cartilages, or glioma cell-laden scaffolds 

have been developed4,11,83). Therefore, the combination of 3D 

scaffolds with 3D bio-printing technologies may support the 

appropriate cellular microenvironment, including cell survival 

and proliferation, and integrate well into the host tissue. How-

ever, applications of 3D bioprinting include the generation of 
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multilayered skin, bone, vascular grafts, heart valves need to 

be improved with respect to the mechanical strength and in-

tegrity in the manufactured constructs. A better understand-

ing of the tissue/organ microenvironment, which consists of 

multiple types of cells, is imperative for successful 3D bio-

printing. These approaches may serve as a major contributing 

factor for the regeneration or restoration of tissues/organs. The 

many potential applications of these techniques are only at the 

beginning of the exploration. Safe iPSC-derived 3D bio-print-

ed tissues/organs will be soon constructed and used for cell 

therapy23,56). 

CONCLUSION

Regenerative medicine using human PSCs is at the peak of 

development and the expectations for the use of PSCs to treat 

incurable diseases are high. iPSC research has rapidly pro-

gressed and reached clinical applications, while the outcomes 

are expected to meet the requirement in the near future. The 

possibility of using iPSCs in regenerative medicine may cir-

cumvent the ethical problems associated with ESC usage; how-

ever, ESCs and iPSCs exhibit a common problem : prevention 

of tumor development that may occur in response to the com-

plete differentiation of stem cells before transplantation. There 

is a risk of tumor development in this process and incidence of 

cancer has been reported in an animal experiment25,53,55). How-

ever, attempts have been directed to overcome this issue, and 

researchers have employed small molecule materials, protein 

preparations, or viral integration-free iPSCs to create stable iP-

SCs29,50,61,84,87,91,95). These solutions may play key roles in the com-

mercialization of methods involving de-differentiation induc-

tion. There are many discussions on the standardization of 

PSCs for research and therapy12,21,63), including cell line deriva-

tion, registries, characterization, storage, banking, distribution, 

and cell engineering6,35,51,70). Therefore, the safety associated 

with the use of iPSCs needs to be continuously evaluated. 

Efforts have been directed to treat rare and incurable dis-

eases, and clinical research and treatment using stem cells 

have recently been extended to strengthen national strategic 

investment in advanced countries. It is also actively promot-

ing the marketability of stem cell therapy drugs. Overcoming 

issues such as limited commercialization, inconsistent large-

scale production, and safety issues of human iPSCs may allow 

researchers to provide a truly viable alternative cell therapy 

source. It would be possible to manage different pharmaco-

logical and genetic approaches that may provide new thera-

peutic strategies. In addition, patient-specific, disease-related 

cells may serve as an incredibly powerful tool for studying 

disease mechanisms through functional analysis, genetic al-

terations, and in vitro drug screening.
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