DOI QR코드

DOI QR Code

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Yukyeong Lee (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Seung-Won Lee (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Seokbeom Ham (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Minseong Lee (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Na Young Choi (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Guangming Wu (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) ;
  • Hans R. Scholer (Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine) ;
  • Kinarm Ko (Department of Stem Cell Biology, School of Medicine, Konkuk University)
  • 투고 : 2022.08.18
  • 심사 : 2022.10.23
  • 발행 : 2023.04.30

초록

In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

키워드

과제정보

This research was supported by National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2021R1F1A1057192) and Korea Environment Industry & Technology Institute (KEITI) through Core Technology Development Project for Environmental Diseases Prevention and Management, funded by Korea Ministry of Environment (MOE) (2021003310002).

참고문헌

  1. Evans, M.J. and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. https://doi.org/10.1038/292154a0
  2. Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., Meng, G., Lyu, Y., Zhu, J., Li, Y., et al. (2022). Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 605, 325-331. https://doi.org/10.1038/s41586-022-04593-5
  3. Hogan, B.L., Cooper, A.R., and Kurkinen, M. (1980). Incorporation into Reichert's membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev. Biol. 80, 289-300. https://doi.org/10.1016/0012-1606(80)90405-4
  4. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654. https://doi.org/10.1126/science.1239278
  5. Jia, F., Wilson, K.D., Sun, N., Gupta, D.M., Huang, M., Li, Z., Panetta, N.J., Chen, Z.Y., Robbins, R.C., Kay, M.A., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nat. Methods 7, 197-199. https://doi.org/10.1038/nmeth.1426
  6. Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472-476. https://doi.org/10.1016/j.stem.2009.05.005
  7. Lee, S.W., Wu, G., Choi, N.Y., Lee, H.J., Bang, J.S., Lee, Y., Lee, M., Ko, K., Scholer, H.R., and Ko, K. (2018). Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells. Mol. Cells 41, 631-638.
  8. Long, Y., Wang, M., Gu, H., and Xie, X. (2015). Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res. 25, 1171-1174. https://doi.org/10.1038/cr.2015.96
  9. Longo, L., Bygrave, A., Grosveld, F.G., and Pandolfi, P.P. (1997). The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6, 321-328. https://doi.org/10.1023/A:1018418914106
  10. Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78, 7634-7638. https://doi.org/10.1073/pnas.78.12.7634
  11. Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317. https://doi.org/10.1038/nature05934
  12. Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409-412. https://doi.org/10.1038/nmeth.1591
  13. Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  14. Takeda, Y., Harada, Y., Yoshikawa, T., and Dai, P. (2018). Chemical compound-based direct reprogramming for future clinical applications. Biosci. Rep. 38, BSR20171650.
  15. Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766-770. https://doi.org/10.1038/nature07863
  16. Yang, Z., Xu, X., Gu, C., Li, J., Wu, Q., Ye, C., Nielsen, A.V., Mao, L., Ye, J., Bai, K., et al. (2020). Chemicals orchestrate reprogramming with hierarchical activation of master transcription factors primed by endogenous Sox17 activation. Commun. Biol. 3, 629.
  17. Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., Wang, Y., Lin, H., Yang, W., Liu, J., et al. (2016). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res. 26, 34-45. https://doi.org/10.1038/cr.2015.142
  18. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I., and Thomson, J.A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797-801. https://doi.org/10.1126/science.1172482
  19. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920. https://doi.org/10.1126/science.1151526
  20. Zhao, T., Fu, Y., Zhu, J., Liu, Y., Zhang, Q., Yi, Z., Chen, S., Jiao, Z., Xu, X., Xu, J., et al. (2018). Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 23, 31-45.e7. https://doi.org/10.1016/j.stem.2018.05.025
  21. Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., et al. (2015). A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 163, 1678-1691.  https://doi.org/10.1016/j.cell.2015.11.017