• 제목/요약/키워드: Incompressibility

검색결과 42건 처리시간 0.022초

모든 속도영역의 점성유동에 적용 가능한 새로운 압력기반 유한요소법 (A New Pressure-Based Finite Element Method Applicable to Viscous Flows at All Speed Ranges)

  • 심은보;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.169-174
    • /
    • 1995
  • A finite element scheme using the concept of PISO method has been developed to solve the viscous flow problems in all speed range. In this study, new pressure equation is proposed such that both the hyperbolic term related with the density variations and elliptic term reflecting the incompressibility constraint are included. Present method has been applied to incompressible flow in two-dimensional driven cavity(Re=100, 400 and 1,000), and its computed results are compared with other's. Also, Carter plate problem(M=3 and Re=1,000) is computed and the comparison is made with Carter's results. Finally, we simulate a shock-boundary layer interaction problem(M=2 and $Re=2.96{\times}10^5$) to illustrate the shock capturing capability of the present solution algorithm.

  • PDF

점소성모델을 이용한 이방성 재료의 비탄성 해석 (Inelastic Analysis of Anisotropic Materials Using the Viscoplastic Model)

  • 신찬호
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1657-1664
    • /
    • 1991
  • 본 연구에서는 재료의 이방성을 고려한 점소성 모델을 제시하였다. 공학적 인 견지에서 볼 때 이방성 재료의 기계적 거동을 표한하기 위해서는 단순화 이론(si- mplified theory)의 개발이 필요하게 되었으며 이에따라 Betten은 등방성 소성 포텐셜 (isotropic plastic potential)에서 응력텐서를 재료의 이방성을 포함하는 변환 응력 텐서(mapped stress tensor)로 대체함으로써 이방성을 고려하였다. 그러므로 실제 이방성 재료의 비탄성 거동은 가상의 등방성 상태로 치환되며 여기에 소성 포텐셜 이 론을 적용하게 된다.

경계 및 불연속의 해결을 위한 이동최소제곱 기반 유한요소의 적용 (Applications of MLS(Moving Least Sqrare)-based Finite Elements for Mechanics Problems Involving Interfaces and Discontinuities)

  • 임재혁;임세영;조영삼
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.567-574
    • /
    • 2006
  • We present applications of MLS-based finite elements, which enable us to easily treat highly complex nonmatching finite element meshes and discontinuities. The shape functions of MLS-based finite element can be easily generated with the aid of Moving Least Square approximation on the parental domain. The major advantage includes that the position of element nodes as well as the number of the element nodes can be conveniently adjusted according to the nature of the problems under consideration, so that finite-element mesh is straightforwardly adapted to evolving discontinuities and. interfaces. Furthermore, we show that the present MLS-based finite elements are efficiently applied for elastic-plastic deformations, wherein the implicit constraint of incompressibility should be properly handled.

  • PDF

수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구 (A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod)

  • 권영두;노권택;이창섭;홍상표
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

주방용 후드시스템의 유동특성에 관한 수치적 연구 (A Numerical Study on the Flow Characteristics of Kitchen Hood System)

  • 임경빈;이광섭;이창희
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.359-369
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. This system is applied with $k-{\varepsilon}$ turbulent model and using incompressibility viscosity flow range and boundary condition which are related to Bossinesq approximation following density variation in control volume. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values.

분할단계법의 경계조건에 관한 연구: 적합성, 안정성 및 정확도 (Investigation on Boundary Conditions of Fractional-Step Methods: Compatibility, Stability and Accuracy)

  • 김영배;이문주;오병도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.410-415
    • /
    • 2001
  • An analytical and numerical examination of second-order fractional-step methods and boundary condition for the incompressible Navier-Stokes equations is presented. In this study, the compatibility condition for pressure Poisson equation and its boundary conditions, stability, and numerical accuracy of canonical fractional-step methods has been investigated. It has been found that satisfaction of compatibility condition depends on tentative velocity and pressure boundary condition, and that the compatible boundary conditions for type D method and approximately compatible boundary conditions for type P method are proper for divergence-free velocity for type D and approximately divergence-free for type P method. Instability of canonical fractional-step methods is induced by approximation of implicit viscous term with explicit terms, and the stability criteria have been founded with simple model problems and numerical experiments of cavity flow and Taylor vortex flow. The numerical accuracy of canonical fractional-step methods with its consistent boundary conditions shows second-order accuracy except $D_{MM}$ condition, which make approximately first-order accuracy due to weak coupling of boundary conditions.

  • PDF

동맥 전단부의 역학적분석을 위한 새로운 실험적 방법 (A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research)

  • 황민철;신정욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.149-156
    • /
    • 1995
  • 동맥전단부를 연구할수있는 새로운 실험방법과 기계역학적 분석방법을 제시하였다. 지금까지동맥역학적 연구는 대부분이 동맥의 길이방향과 원주방향에 대한것이 이였다. 두께방향의 변형은 포아손비라든지 비압축성가정으로 이론적으로 결정되었다. 또한 두께에 걸친 변형의 변화도 무시되었다. 그러나 병리학적인 의미에서 동맥의 두께에 걸친 변형도와 변형의 분포는 중요한 의미를 가진다. 그러므로 본연구에서 제안된 실험방법과 장치는 두께전반에 걸친 변형을 측정할수 있게 했다. 또한 전단부의 부위별 변형도의 관찰이 가능하고 병리적인 동맥경화증에 대한 현상과 역학적현상을 상관시킬 수 있음에 중요한 의미를 들 수 있다.

  • PDF

비압축성 유동 해석을 위한 입자법 수치 시뮬레이션 기술 개발 (Development of Numerical Simulation of Particle Method for Solving Incompressible Flow)

  • 이병혁;류민철;김용수;김영훈;박종천
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.8-14
    • /
    • 2007
  • A particle method recognized as one of gridless methods has been developed to investigate incompressible viscous flaw. The method is more feasible and effective than conventional grid methods for solving the flaw field with complicated boundary shapes or multiple bodies. The method is consists of particle interaction models representing pressure gradient, diffusion, incompressibility and the boundary conditions. In the present study, the models in case of various simulation condition were checked with the analytic solution, and applied to the two-dimensional Poiseuille flow in order to validate the developed method.

Compensation in VC and Word

  • Yun, Il-Sung
    • 말소리와 음성과학
    • /
    • 제2권3호
    • /
    • pp.81-89
    • /
    • 2010
  • Korean and three other languages (English, Arabic, and Japanese) were compared with regard to the compensatory movements in a VC (Vowel and Consonant) sequence and word. For this, Korean data were collected from an experiment and the other languages' data from literature. All the test words of the languages had the same syllabic contexture, i.e., /CVCV(r)/, where C was an oral stop and intervocalic consonants were either bilabial or alveolar stops. The present study found that (1) Korean is most striking in the durational variations of segments (vowel and the following hetero-syllabic consonant); (2) unlike the three languages that show a constant sum of VC, Korean yields a three-way distinction in the length of VC according the type (lax unaspirated vs. tense unaspirated vs. tense aspirated) of the following stop consonant; (3) a durational constancy is maintained up to the word level in the three languages, but Korean word duration varies as a function of the feature tenseness of the intervocalic consonants; (4) consonant duration is proven to differentiate Korean the most from the other languages. It is suggested that the durational difference between a lax consonant and its tense cognate(s) and the degree of compensation between V and C are determined by the phonology in each language.

  • PDF

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.