Browse > Article
http://dx.doi.org/10.12989/was.2012.15.3.189

Lock-in and drag amplification effects in slender line-like structures through CFD  

Belver, Ali Vasallo (CARTIF Centro Tecnologico, Parque Tecnologico de Boecillo)
Iban, Antolin Lorenzana (CARTIF Centro Tecnologico, Parque Tecnologico de Boecillo)
Rossi, Riccardo (International Center for Numerical Methods in Engineering)
Publication Information
Wind and Structures / v.15, no.3, 2012 , pp. 189-208 More about this Journal
Abstract
Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.
Keywords
fluid-structure interaction; vortex-induced vibrations; slender line-like structures; lock-in; drag coefficient amplification;
Citations & Related Records
연도 인용수 순위
1 Basu, R.I. and Vickery, B.J. (1983), "Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application", J. Wind. Eng. Ind. Aerod., 12(1), 75-97.   DOI
2 Belver, A.V. (2009), Analysis of aeroelastic vibrations in slender structures under wind loads, Ph.D. Dissertation, University of Valladolid, Spain.
3 Belver, A.V., Mediavilla, A.F., Iban, A.L. and Rossi. R. (2010), "Fluid-structure coupling analysis and simulation of a slender composite beam", Sci. Eng. Compos. Mater., 17(1), 47-77.
4 Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder in a flowing field", Proceedings of the Royal Society, London Series A 227.
5 Blevins, R.D. and Burton, T.E. (1976), "Fluid Forces Induced by Vortex Shedding", J. Fluid. Eng.-T ASME, 98(1), 19-26.   DOI
6 Braza, M., Chassaing, P. and Minh, H.H. (1986), "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder", J. Fluid Mech., 165, 79-130.   DOI
7 Codina, R. (2000), "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods", Comput. Method. Appl. M., 190(13-14), 1579-1599.   DOI   ScienceOn
8 Codina, R. (2001), "Pressure stability in fractional step finite element methods for incompressible flows", J. Comput. Phys., 170(1), 112-140.   DOI   ScienceOn
9 Codina, R. (2002), "Stabilized finite element approximation of transient incompressible flows using orthogonal subscales", Comput. Method. Appl. M., 191(39-40), 4295-4321.   DOI   ScienceOn
10 Codina, R., Principe, J. and Avila, M. (2010), "Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling", Int. J. Numer. Method. H., 20(5) ,492-516.   DOI   ScienceOn
11 D'Asdia, P. and Noe, S. (1998), "Vortex induced vibration of reinforced concrete chimneys: in situ experimentation and numerical previsions", J. Wind. Eng. Ind. Aerod., 74-76, 765-776.   DOI
12 Dadvand, P., Rossi, R. and Onate, E. (2010), "An object-oriented environment for developing finite element codes for multi-disciplinary applications", Arch. Comput. Method. E., 17(3), 253-297.   DOI   ScienceOn
13 Dawes, W.N. (1993), "Simulating unsteady turbomachinery flows on unstructured meshes which adapt both in time and space", Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Ohio, USA, May.
14 Donea, J. and Huerta, A. (2003), Finite element methods for flow problems, Wiley: Chichester.
15 Dyrbye, C. and Hansen, S.O. (1997), Wind loads on structures, J. Wiley & Sons, Chichester, England.
16 Feng, C.C. (1968), The measurement of vortex-induced effects in flow past a stationary and oscillating circular cylinder and d-section cylinders, Master's Thesis, Universidad de British Columbia, Vancouver, Canada.
17 Forster, C. (2007), Robust methods for fluid-structure interaction with stabilized finite elements, PhD thesis, Stuttgar.
18 Fujarra, A.L.C., Pesce, C.P., Flemming, F. and Williamson, C.H.K. (2001), "Vortex-induced vibration of a flexible cantilever", J. Fluid. Struct., 15(3-4), 651-658.   DOI   ScienceOn
19 Gorski, P. (2009), "Some aspects of the dynamic cross-wind response of tall industrial chimney", Wind Struct., 12(3), 259-279.   DOI
20 Gorski, P. and Chmielewski, T. (2008), "A comparative study of along and cross-wind responses of a tall chimney with and without flexibility of soil", Wind Struct., 11(2), 121-135.   DOI
21 Hansen, S.O. (1981), "Cross-wind vibrations of a 130-m tapered concrete chimney", J. Wind. Eng. Ind. Aerod., 8(4-5), 145-155.   DOI
22 Kalktsis, L., Triantafyllou, G.S. and Ozbas, M. (2007), "Excitation, inertia, and drag forces on a cylinder vibrating transversely to a steady flow", J. Fluid. Struct., 23(1), 1-21.   DOI   ScienceOn
23 Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator of vortex-induced vibration", J. Eng. Mech.- ASCE, 96(5), 577-591.
24 Idelsohn, S.R., Del Pin, F., Rossi, R. and Onate, E. (2009), "Fluid-structure interaction problems with strong addedmass effect", Int. J. Numer. Meth. Eng., 80(10), 1261-1294.   DOI   ScienceOn
25 Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 33(2), 81-94.   DOI   ScienceOn
26 Kitagawa, T., Fujino, Y. and Kimura, K. (1999), "Effects of free end condition on end-cell induced vibration", J. Fluid. Struct., 13(4), 499-518.   DOI   ScienceOn
27 Kwok, C.S. (1981), "Wind-induced lock-in excitation of tall structures", J. Eng. Mech.- ASCE, 107(1), 57-72.
28 Lankadasu, A. and Vengadesan, S. (2010), "Large eddy simulation of bluff body wake in planar shear flow", Int. J. Numer. Meth. Fl., 64(6), 676-688.
29 Lopes, A.V., Cunha, A. and Simoes, L.M.C. (2004), "Modelo computacional de analise aeroelastica das condicoes de utilizacao de estructuras esbeltas", Proceedings of the Congresso de Metodos Computacionais em Engenharia, Lisboa, Portugal, May.
30 Lucor, D., Imas, L. and Karniadakis, G.E. (2001), "Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows". J. Fluid. Struct., 15(6), 887-887.   DOI   ScienceOn
31 Mediavilla, A.F., Garcia, J.A.G. and Belver, A.V. (2007), "One-dimensional model for the analysis of thinwalled composite beams", Rev. Int. Metod. Numer., 23(2), 225-242.
32 Meneghini, J.R., Saltara, F., Fregonesi, R.D., Yamamoto, C.T., Casaprima, E. and Ferrari, J.A. (2004), "Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields", Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-3), European Journal of Mechanics B-Fluids, 23(1), 51-63.   DOI   ScienceOn
33 Prasanth, T. K., Behara, S., Singh, S.P., Kumar, R. and Mittal, S. (2006), "Effect of blockage on vortex-induced vibrations at low Reynolds numbers", J. Fluid. Struct., 22(6-7), 865-876.   DOI   ScienceOn
34 Nieto, F., Hernandez, S., Jurado, J.A. and, Baldomir A. (2010), "CFD practical application in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4), 309-326.   DOI
35 Norberg, C. (2001), "Flow around a circular cylinder: aspects of fluctuating lift", J. Fluid. Struct., 15 (3-4), 459-469.   DOI   ScienceOn
36 Onate, E., Valls, A. and Garcia, J. (2007), "Computation of turbulent flows using a finite calculus-finite element formulation", Int. J. Numer. Meth. Eng., 54(6-8), 609-637.   DOI   ScienceOn
37 Prasanth, T.K. and Mittal, S. (2008), "Vortex-induced vibrations of a circular cylinder at low Reynolds numbers", J. Fluid Mech., 594, 463-491.
38 Principe, J, Codina, R. and Henke, F. (2010), "The dissipative structure of variational multiscale methods for incompressible flows", Comput. Method. Appl. M., 199(13-16), 791-801.   DOI   ScienceOn
39 Repetto, M.P. and Solari, G. (2002), "Dynamic crosswind fatigue of slender vertical structures", Wind Struct., 5(6), 527-542.   DOI
40 Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind. Eng. Ind. Aerod., 69-71, 55-75.   DOI
41 Rossi, R. and Onate, E. (2010), "Analysis of some partitioned algorithms for fluid-structure interaction", Eng. Comput., 27(1), 20-56.   DOI   ScienceOn
42 Selvam, R.P., Govindaswamy, S. and Bosch, H. (2002), "Aeroelastic analysis of bridges using FEM and moving grids", Wind Struct., 5(2), 257-266.   DOI
43 Simiu, E. and Scanlan, R.H. (1978), Wind effects on structures: An introduction to wind engineering, John Wiley & Sons.
44 Skop, R.A. and Griffin O.M. (1975), "On a theory for the vortex-excited oscillations of flexible cylindrical structures", J. Sound Vib., 41(2), 263-274.   DOI
45 Vickery, B.J. and Basu, R.I. (1983), "Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions", J. Wind. Eng. Ind. Aerod., 12(1), 49-73.   DOI   ScienceOn
46 Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows", J. Fluid. Struct., 15(6), 867-884.   DOI   ScienceOn
47 Son, J.S. and Hanratty, T.J. (1996), "Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500", J. Fluid Mech., 35, 369-386.
48 Vickery, B.J. and Basu, R.I. (1983), "Simplified approaches to the evaluation of the across-wind response of chimneys", J. Wind. Eng. Ind. Aerod., 14(1-3), 153-166.   DOI   ScienceOn
49 Vickery, B.J. and Clark, A.W. (1972), "Lift or across-wind response of tapered stacks", J. Struct. Division, 98(1), 1-20.
50 Willden, R.H.J. and Graham, J.M.R. (2001), "Numerical prediction of VIV on long flexible circular cylinders", J. Fluid. Struct., 15(3-4), 659-669.   DOI   ScienceOn
51 Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex induced vibrations", J. Wind. Eng. Ind. Aerod., 96(6-7), 713-735.   DOI   ScienceOn