• 제목/요약/키워드: InGaZnO (IGZO) films

검색결과 33건 처리시간 0.03초

Dry Etching Process for the Fabrication of Transparent InGaZnO TFTs

  • Yoon, S.M.;Cheong, W.S.;Hwang, C.S.;Kopark, S.H.;Cho, D.H.;Shin, J.H.;Ryu, M.;Byun, C.W.;Yang, S.;Lee, J.I.;Chung, S.M.;Chu, H.Y.;Cho, K.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.222-225
    • /
    • 2008
  • We proposed the dry etching process recipe for the fabrication of In-Ga-Zn-O (IGZO)-based oxide TFTs, in which the etching behaviors of IGZO films were systematically investigated when the etching gas mixtures and their mixing ratios were varied. Good device characteristics of the fabricated TFT were successfully confirmed.

  • PDF

고주파 마그네트론 스퍼터링법으로 제조된 ZnO:Ga,In(IGZO) 박막의 특성 (The Properties of ZnO:Ga,In(IGZO) Thin Films Prepared by RF Magnetron Sputtering)

  • 김형민;마대영;박기철
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2013
  • IGZO thin films have been prepared by RF magnetron sputtering. The structural, electrical and optical properties of the IGZO thin films have been investigated as a function of deposition condition. XRD analysis of IGZO thin films showed a typical crystallographic orientation with c-axis perpendicular regardless of deposition conditions. The carrier mobility, carrier concentration and resistivity of the IGZO films sputtered at 200 W, 1mTorr and $300^{\circ}C$ were $28.5cm^2/V{\cdot}sec$, $2.6{\times}10^{20}cm^3$, $8.8{\times}10^{-4}{\Omega}{\cdot}cm$ respectively. The optical transmittance were higher than 80% at visible region regardless of the deposition conditions under the experiments above, and specifically higher than 90% at wave length over 500 nm. The absorption edge was shifted to shorter wavelength with increase of carrier concentration.

RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화 (The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power)

  • 김상훈;박용헌;김홍배
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

고 에너지 전자빔 조사된 IGZO 박막의 광 투과도에 대한 연구 (A Study on the Optical Transmittance of High-energy Electron-beam Irradiated IGZO Thin Films)

  • 윤의중
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.71-77
    • /
    • 2014
  • 본 연구에서는 radio frequency(rf) 마그네트론 스퍼터링 기술을 이용하여 Corning 유리 기판에 증착된 InGaZnO (IGZO) 박막의 광 투과도 특성에 고 에너지 전자빔 조사(high-energy electron beam irradiation (HEEBI))이 미치는 영향을 연구하였다. 저온에서 증착된 IGZO 박막은 공기 중 과 상온 조건에서 0.8 MeV의 전자빔 에너지와 $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$ dose를 사용하여 HEEBI 처리 되었다. IGZO 박막의 광 투과도는 utraviolet visible near-infrared spectrophotometer (UVVIS)로 측정되었다. HEEBI 처리 된 IGZO/유리 이중층의 총 광 투과도에서 HEEBI 처리된 IGZO 단일막 만의 광 투과도를 분리하는 방법을 상세히 연구하였다. 실험 결과로부터 $1{\times}10^{14}electrons/cm^2$의 적절한 dose로 처리된 HEEBI가 IGZO 박막의 투명도를 극대화시킴을 알 수 있었다. 또한 이렇게 적절한 dose로 처리된 HEEBI가 광학 밴드갭($E_g$)을 3.38 eV에서 3.31 eV로 감소시킴을 알 수 있었다. 이러한 $E_g$의 감소는 적절한 dose로 공기 중 상온에서 처리된 HEEBI가 진공 중 고온에서 처리된 열적 annealing 효과와 유사함을 제시하고 있다.

열처리에 의한 비정질 산화물 반도체 $InGaZnO_4$ 박막의 전기적 특성 변화 연구 (Effect of annealing on the electrical properties of amorphous oxide semiconductor $InGaZnO_4$ films)

  • 배성환;구현;유일환;정명진;강석일;박찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1277_1278
    • /
    • 2009
  • Amorphous oxide semiconductor $InGaZnO_4$(IGZO) is a very promising candidate of channel layer in transparent thin film trasisitor(TTFT) because of its high mobility and high transparency in visible light region. Amorphous IGZO films were deposited at room temperature on a fused silica substrate using pulsed laser deposition method. In-situ post annealing was carried out at 150-450C right after film deposition. The $O_2$ partial pressures during the deposition and the post annealing was fixed to 10mTorr. The electron transport properties of the amorphous IGZO films were improved by thermal annealing. The temperature range in which the improvement of the electrical properties, was 150C~300C.

  • PDF

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol;Choi, Jae Ha;Lee, Ho Seong
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.322-328
    • /
    • 2015
  • We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

Optoelectrical properties of IGZO/Cu bi-layered films deposited with DC and RF magnetron sputtering

  • joo, Moon hyun;hyun, Oh-jung;Son, Dong-Il;Kim, Daeil
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered Polycarbonate (PC) substrates with RF magnetron sputtering and then the effect of Cu buffer layer on the optical and electrical properties of the films was investigated. While IGZO single layer films show the electrical resistivity of $1.2{\times}10-1{\Omega}cm$, IGZO/Cu bi-layered films show a lower resistivity of $1.6{\times}10-3{\Omega}cm$. Although the optical transmittance of the films in a visible wave length range is deteriorated by Cu buffer layer, IGZO films with 5 nm thick Cu buffer layer show the higher figure of merit of $2.6{\times}10-4{\Omega}-1$ than that of the IGZO single layer films due to the enhanced opto-electrical performance of the IGZO/Cu bi-layered films.

  • PDF

RF-Magnetron Sputtering법을 이용한 IGZO박막의 기판온도에 따른 특성분석 (IGZO Films Using RF-Magnetron Sputtering Method of Analysis of the substrate temperature)

  • 김미선;김동영;배강;손선영;김화민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.135-135
    • /
    • 2010
  • 본 연구에서는 ZnO를 기반으로 하여 $In_2O_3$, $Ga_2O_3$를 혼합한 IGZO 박막의 물성들을 분석하였다. 광학적 특성 결과 가시광 영역에서 모두 80%이상의 투과율을 나타내었으며, 전기적 특성을 조사한 결과 $In_2O_3:Ga_2O_3$:ZnO (1:9:90 wt.%)의 IGZO박막에서 $1.90{\times}10^{-3}\;\Omega/cm$의 비저항을 확인 할 수 있었다. 또한 상온에서 $400^{\circ}C$로 기판온도에 변화를 주어 실험하였으며, 결정성을 분석하기 위하여 XRD (PANALYTICAL CO.)를 사용하였고, SEM (JEOL CO.) 을 이용하여 IGZO박막의 미세 구조를 확인하였다. UV-ViS spectrophotometer (SHIMADZU CO.) 을 사용하여 광학적 특성을 측정하였으며, Hall effect측정 장비를 이용하여 캐리어 농도 및 Hall이동도 변화에 따른 비저항을 비교 분석하였다.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

다양한 기판온도에서 증착된 투명 전도성 IGZO 박막의 특성 (Properties of Transparent Conductive IGZO Thin Films Deposited at Various Substrate Temperatures)

  • 김미선;김동영;서성보;배강;손선영;김화민
    • 한국전기전자재료학회논문지
    • /
    • 제23권12호
    • /
    • pp.961-965
    • /
    • 2010
  • In this study, we investigated the optical, electrical, and structural properties of the IGZO($In_2O_3:Ga_2O_3:ZnO$=1:9:90 wt.%) thin films prepared by RF-magnetron sputtering system under various substrate temperatures. All of the IGZO thin films shows an average transmittance of over the 80% in visible range. Most of all, deposited IGZO thin film at $100^{\circ}C$ substrate temperature have ZnO (002) of main growth peak and 17.02 nm of increased grains. And also IGZO thin film have low resistivity($1.35{\times}10^{-3}\;\Omega{\cdot}cm$), high carrier concentration($6.62{\times}10^{20} cm^{-3}$) and mobility($80.1 cm^2$/Vsec). IGZO thin film have 2.08 mV at surface potential of electric force microscopy(EFM). We suggest that pre-annealing at $100^{\circ}C$ can be applied for improving optical, electrical and structural properties.