DOI QR코드

DOI QR Code

고 에너지 전자빔 조사된 IGZO 박막의 광 투과도에 대한 연구

A Study on the Optical Transmittance of High-energy Electron-beam Irradiated IGZO Thin Films

  • 윤의중 (호서대학교 정보통신공학과)
  • Yun, Eui-Jung (Department of Information and Communication Engineering, Hoseo University)
  • 투고 : 2014.01.28
  • 심사 : 2014.05.24
  • 발행 : 2014.06.25

초록

본 연구에서는 radio frequency(rf) 마그네트론 스퍼터링 기술을 이용하여 Corning 유리 기판에 증착된 InGaZnO (IGZO) 박막의 광 투과도 특성에 고 에너지 전자빔 조사(high-energy electron beam irradiation (HEEBI))이 미치는 영향을 연구하였다. 저온에서 증착된 IGZO 박막은 공기 중 과 상온 조건에서 0.8 MeV의 전자빔 에너지와 $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$ dose를 사용하여 HEEBI 처리 되었다. IGZO 박막의 광 투과도는 utraviolet visible near-infrared spectrophotometer (UVVIS)로 측정되었다. HEEBI 처리 된 IGZO/유리 이중층의 총 광 투과도에서 HEEBI 처리된 IGZO 단일막 만의 광 투과도를 분리하는 방법을 상세히 연구하였다. 실험 결과로부터 $1{\times}10^{14}electrons/cm^2$의 적절한 dose로 처리된 HEEBI가 IGZO 박막의 투명도를 극대화시킴을 알 수 있었다. 또한 이렇게 적절한 dose로 처리된 HEEBI가 광학 밴드갭($E_g$)을 3.38 eV에서 3.31 eV로 감소시킴을 알 수 있었다. 이러한 $E_g$의 감소는 적절한 dose로 공기 중 상온에서 처리된 HEEBI가 진공 중 고온에서 처리된 열적 annealing 효과와 유사함을 제시하고 있다.

In this paper, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of InGaZnO (IGZO) films grown on transparent Corning glass substrates, with a radio frequency magnetron sputtering technique. The IGZO thin films deposited at low temperature were treated with HEEBI in air at room temperature (RT) with an electron beam energy of 0.8 MeV and doses of $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$. The optical transmittance of the IGZO films was measured using an ultraviolet visible near-infrared spectrophotometer (UVVIS). The detailed estimation process for separating the transmittance of HEEBI-treated IGZO films from the total transmittance of IGZO films on transparent substrates treated with HEEBI is given in this paper. Based on the experimental results, we concluded that HEEBI with an appropriate dose of $10^{14}electrons/cm^2$ causes a maximum increase in the transparency of IGZO thin films. We also concluded that HEEBI treatment with an appropriate dose shifted the optical band gap ($E_g$) toward the lower energy region from 3.38 to 3.31 eV. This $E_g$ shift suggested that HEEBI in air at RT with an appropriate dose acts like a thermal annealing treatment in vacuum at high temperature.

키워드

참고문헌

  1. S-H. Kuk, S-Y. Lee, S-J. Kim, B. Kim, S-J. Park, J-Y. Kwon, and M-K. Han, IEEE Electron Device Lett. 33, 1279 (2012). https://doi.org/10.1109/LED.2012.2205891
  2. M. D. H. Chowdhury, P. Migliorato, and J. Jang, Appl. Phys. Lett. 102, 143506 (2013). https://doi.org/10.1063/1.4801762
  3. A. U. Adler, T. C. Yeh, D. B. Buchholz, R. P. H. Chang, and T. O. Mason, Appl. Phys. Lett. 102, 122103 (2013). https://doi.org/10.1063/1.4796119
  4. P. Migliorato, M. D. H. Chowdhury, J. G. Um, M. Seok, and J. Jang, Appl. Phys. Lett. 101, 123502 (2012). https://doi.org/10.1063/1.4752238
  5. Y-M. Kim, K-S. Jeong, H-J. Yun, S-D. Yang, S-Y. Lee, Y-C. Kim, J-K. Jeong, H-D. Lee, and G-W. Lee, Appl. Phys. Lett. 102, 173502 (2013). https://doi.org/10.1063/1.4803536
  6. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 518, 3017 (2010). https://doi.org/10.1016/j.tsf.2009.10.132
  7. S-Y. Huang, T-C. Chang, S. Y. Huang, M-C. Chen, S-W. Tsao, S-C. Chen, C-T. Tsai, and H-P. Lo, Solid-State Electron. 61, 96 (2011). https://doi.org/10.1016/j.sse.2011.01.001
  8. K-S. Son, J. S. Park, T. S. Kim, H-S. Kim, S-J. Seo, S-J. Kim, J. B. Seon, K. H. Ji, J. K. Jeong, M. K. Ryu, and S. Lee, Appl. Phys. Lett. 102, 122108 (2013). https://doi.org/10.1063/1.4794419
  9. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B: Condens. Matter. Mater. Phys. 71, 125210 (2005). https://doi.org/10.1103/PhysRevB.71.125210
  10. E. Gur, H. Asil, C. Coskun, S. Tuzemen, K. Meral, Y. Onganer, and K. Serifoglu, Nucl. Instrum. Meth. Phys. Res. B 266, 2021 (2008). https://doi.org/10.1016/j.nimb.2008.03.198
  11. E-J. Yun, J. W. Jung, C. I. Cheon, J. S. Kim, Y. H. Han, M-W. Kim, and B. C. Lee, J. Mater. Res. 24, 1785 (2009). https://doi.org/10.1557/jmr.2009.0186
  12. E-J. Yun, J. W. Jung, Y. H. Han, M-W. Kim, and B. C. Lee, J. Appl. Phys. 105, 123509 (2009). https://doi.org/10.1063/1.3149783
  13. E-J. Yun, J. W. Jung, Y. H. Han, M-W. Kim, and B. C. Lee, J. Korean Phys. Soc. 56, 356 (2010). https://doi.org/10.3938/jkps.56.356
  14. E-J. Yun, J. W. Jung, and B. C. Lee, J. Alloys Compd. 496, 543 (2010). https://doi.org/10.1016/j.jallcom.2010.02.097
  15. E-J. Yun, J. W. Jung, K. N. Ko, J. Hwang, B. C. Lee, and M-H. Jung, Thin Solid Films 518, 6236 (2010). https://doi.org/10.1016/j.tsf.2010.03.164
  16. Y-J. Lin, C-L. Tsai, Y-M. Lu, and C-J. Liu, J. Appl. Phys. 99, 093501 (2006). https://doi.org/10.1063/1.2193649
  17. R. D. Guenther, Modern Optics (John Wiley & Sons, NewYork, 1990), p. 61-86.
  18. Corning 1737 AMLCD Glass Substrates, Material Information; http://www.corning.com/displaytechnologies.
  19. T. Kamiya, K. Nomura, and H. Hosono, P hys. Status Solidi A 206, 860 (2009). https://doi.org/10.1002/pssa.200881303
  20. Y. Choi, G. H. Kim, W. H. Jeong, H. J. Kim, B. D. Chin, and J-W. Yu, Thin Solid Films 518, 6249 (2010). https://doi.org/10.1016/j.tsf.2010.04.006
  21. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, 2007), p. 30.
  22. T. Kamiya, K. Nomura, and H. Hosono, Journal of Display Technology 5, 468 (2009). https://doi.org/10.1109/JDT.2009.2034559