• Title/Summary/Keyword: InGaP/InGaAs p-HEMT

Search Result 100, Processing Time 0.026 seconds

High Output Power and High Fundamental Leakage Suppression Frequency Doubler MMIC for E-Band Transceiver

  • Chang, Dong-Pil;Yom, In-Bok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2014
  • An active frequency doubler monolithic microwave integrated circuit (MMIC) for E-band transceiver applications is presented in this letter. This MMIC has been fabricated in a commercial $0.1-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (pHEMT) process on a 2-mil thick substrate wafer. The fabricated MMIC chip has been measured to have a high output power performance of over 13 dBm with a high fundamental leakage suppression of more than 38 dBc in the frequency range of 71 to 86 GHz under an input signal condition of 10 dBm. A microstrip coupled line is used at the output circuit of the doubler section to implement impedance matching and simultaneously enhance the fundamental leakage suppression. The fabricated chip is has a size of $2.5mm{\times}1.2mm$.

타원편광분석법을 이용한 $In_xAl_{1-x}P$ 박막의 광물성 연구

  • Byeon, Jun-Seok;Hwang, Sun-Yong;Kim, Tae-Jung;Kim, Yeong-Dong;Aspnes, D.E.;Chang, Y.C.;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.423-423
    • /
    • 2013
  • 3~5 족 반도체 물질인 phosphorus 화합물 중 대표적인 InAlP 삼종화합물은 작은 굴절률, 큰 밴드갭, GaAs와 lattice 일치 때문에 큰 주목을 받고 있고, p-type high electron mobility transistors(p-HEMT), laser diodes 등의 고속 전자소자 및 광전 소자에 응용이 가능한 매우 중요한 물질이다. 최적의 소자 응용기술을 위해서는, 정확한 광물성 연구가 수행되어야 하지만 InxAl1-xP 화합물에 대한 유전율 함수 및 전자전이점 등의 연구는 미흡한 실정이다. 이에 본 연구에서는 1.5~6.0 eV 에너지 영역에서 각기 다른 In 조성비를 갖는 InxAl1-xP 화합물의 가유전율 함수 ${\varepsilon}={\varepsilon}_1+i{\varepsilon}_2$와 전자전이점 데이터를 보고한다. GaAs 기판 위에 molecular beam epitaxy (MBE)를 이용하여 InxAl1-xP (x=0.000, 0.186, 0.310, 0.475, 0.715, 0.831, 1.000) 박막을 성장하였고 타원편광분석기를 이용하여 유전율 함수를 측정하였다. 또한 실시간 화학적 에칭을 통하여 시료 표면에 자연산화막을 제거함으로써 순수한 InAlP의 유전율 함수를 측정할 수 있었고, 측정된 유전율 함수를 이차미분하여 In 조성비에 따른 전자전이점을 얻을 수 있었다. 얻어진 전자전이점 값을 이용하여 linear augmented Slater-type orbital method (LASTO) 를 통해 이론적 전자 밴드 구조 계산을 하였고, 이를 바탕으로 $E_0$, $E_1$, $E_2$ 전이점 지역의 여러 전자전이점($E_1$, $E_1+{\Delta}_1$, $E_0'$, $E_0'+{\Delta}_0'$, $E_2$, $E_2'$)의 특성을 정의할 수 있었고, $E_0'$$E_2$ 전이점의 에너지 값이 In 조성비가 증가함에 따라 서로 교차함을 발견할 수 있었다. 타원 편광 분석법을 이용한 유전율 함수 및 전자전이점 연구는 InAlP의 광학적 데이터베이스를 확보하는 성과와 더불어 새로운 디바이스 기술 및 광통신 산업에도 유용한 정보가 될 것이다.

  • PDF

A Ka-Band 6-W High Power MMIC Amplifier with High Linearity for VSAT Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.546-549
    • /
    • 2013
  • A Ka-band 6-W high power microwave monolithic integrated circuit amplifier for use in a very small aperture terminal system requiring high linearity is designed and fabricated using commercial 0.15-${\mu}m$ GaAs pHEMT technology. This three-stage amplifier, with a chip size of 22.1 $mm^2$ can achieve a saturated output power of 6 W with a 21% power-added efficiency and 15-dB small signal gain over a frequency range of 28.5 GHz to 30.5 GHz. To obtain high linearity, the amplifier employs a class-A bias and demonstrates an output third-order intercept point of greater than 43.5 dBm over the above-mentioned frequency range.

A Fast and Robust Approach for Modeling of Nanoscale Compound Semiconductors for High Speed Digital Applications

  • Ahlawat, Anil;Pandey, Manoj;Pandey, Sujata
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.182-188
    • /
    • 2006
  • An artificial neural network model for the microwave characteristics of an InGaAs/InP hemt for 70 nm gate length has been developed. The small-signal microwave parameters have been evaluated to determine the transconductance and drain-conductance. We have further investigated the frequency characteristics of the device. The neural network training have been done using the three layer architecture using Levenberg-Marqaurdt Backpropagation algorithm. The results have been compared with the experimental data, which shows a close agreement and the validity of our proposed model.

A Study on the development of high gain and high power Ka-band hybrid power amplifier module (고출력, 고이득 Ka-band 하이브리드 전력증폭기 모듈 개발에 관한 연구)

  • Lee, Sang-Hyo;Kim, Hong-Teuk;Jeong, Jin-Ho;Kwon, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.49-54
    • /
    • 2001
  • In this work, we developed a Ka-band hybrid 4-stage power amplifier module using GaAs pHEMTs and waveguide to microstrip transitions. It has high gain and high output power characteristics. We used a 10 mil- thickness duroid substrate to fabricate this power amplifier and waveguide to microstrip transitions. The fabricated waveguide to microstrip transition showed about 1 dB insertion loss(back to back) at 32 40 GHz. The measured results of power amplifier module showed over 1W output power at 36.1 - 37.1 GHz. And it showed 31 dBm output power, 24 dB power gain and 15 % power-added efficiency(PAE) at 36.5 GHz.

  • PDF

Distributed Amplifier with Control of Stability Using Varactors (가변 커패시터를 이용하여 안정도를 조절할 수 있는 Distributed Amplifier)

  • Chu Kyong-Tae;Jeong Jin-Ho;Kwon Young-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.482-487
    • /
    • 2005
  • In this paper, we propose the control method of output impedance of each cascode unit cell of distributed amplifier by connecting varactors in the gate-terminal of common gate. Compared to common source unit cell, cascode unit cell has many advantages such as high gain and high output impedance as well as negative resistance loading. But if the transistor model which is used in design is inaccurate and process parameter is changed, oscillation sometimes can occur at band edge in which the gain start to drop. Therefore, we need control circuit which can prevent oscillation, although the circuit has already fabricated, and varactor connected to gate-terminal of common gate of cascode gain cell can play that part. Measured result of fabricated distributed amplifier shows the capability of contol of gain characteristic by adjusting of value of varactors, this can guarantee the stability of the circuit. The gain is $8.92\pm0.82dB$ over 49 GHz, the group delay is $\pm9.3 psec$ over 41 GHz. All transistor which has $0.15{\mu}m$ gate length is GaAs based p-HEMT, and distributed amplifier is put together with 4 stages.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

An S-Band Multifunction Chip with a Simple Interface for Active Phased Array Base Station Antennas

  • Jeong, Jin-Cheol;Shin, Donghwan;Ju, Inkwon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • An S-band multifunction chip with a simple interface for an active phased array base station antenna for next-generation mobile communications is designed and fabricated using commercial 0.5-${\mu}m$ GaAs pHEMT technology. To reduce the cost of the module assembly and to reduce the number of chip interfaces for a compact transmit/receive module, a digital serial-to-parallel converter and an active bias circuit are integrated into the designed chip. The chip can be controlled and driven using only five interfaces. With 6-bit phase shifting and 6-bit attenuation, it provides a wideband performance employing a shunt-feedback technique for amplifiers. With a compact size of 16 $mm^2$ ($4mm{\times}4mm$), the proposed chip exhibits a gain of 26 dB, a P1dB of 12 dBm, and a noise figure of 3.5 dB over a wide frequency range of 1.8 GHz to 3.2 GHz.

A High Linearity Low Noise Amplifier Using Modified Cascode Structure (높은 선형성을 갖는 새로운 구조의 MMIC 저잡음 증폭기)

  • Park, Seung Pyo;Eu, Kyoung Jun;No, Seung Chang;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.220-223
    • /
    • 2016
  • This letter proposes a low noise amplifier which has low noise figure and high linearity simultaneously using a cascode structure with an additional transistor. The proposed structure minimizes the noise source by using optimizing transistor sizes and also improves linearity from the current bleeding technique. The device was fabricated in a $0.5{\mu}m$ GaAs pHEMT process and has noise figure of 1.1 dB, a voltage gain of 15.0 dB, an $OIP_3$ of 30.8 dBm and an input/output return loss of 11.6 dB/10.4 dB from 1.8 to 2.6 GHz.

16-QAM-Based Highly Spectral-Efficient E-band Communication System with Bit Rate up to 10 Gbps

  • Kang, Min-Soo;Kim, Bong-Su;Kim, Kwang Seon;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.649-654
    • /
    • 2012
  • This paper presents a novel 16-quadrature-amplitude-modulation (QAM) E-band communication system. The system can deliver 10 Gbps through eight channels with a bandwidth of 5 GHz (71-76 GHz/81-86 GHz). Each channel occupies 390 MHz and delivers 1.25 Gbps using a 16-QAM. Thus, this system can achieve a bandwidth efficiency of 3.2 bit/s/Hz. To implement the system, a driver amplifier and an RF up-/down-conversion mixer are implemented using a $0.1{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor (GaAs pHEMT) process. A single-IF architecture is chosen for the RF receiver. In the digital modem, 24 square root raised cosine filters and four (255, 239) Reed-Solomon forward error correction codecs are used in parallel. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 21.5 dB.