A Fast and Robust Approach for Modeling of Nanoscale Compound Semiconductors for High Speed Digital Applications

  • Ahlawat, Anil (School of Engineering and Technology, Guru Gobind Singh Indraprastha University) ;
  • Pandey, Manoj (Institute of Technology and Management) ;
  • Pandey, Sujata (School of Engineering and Technology, Guru Gobind Singh Indraprastha University)
  • Published : 2006.09.30

Abstract

An artificial neural network model for the microwave characteristics of an InGaAs/InP hemt for 70 nm gate length has been developed. The small-signal microwave parameters have been evaluated to determine the transconductance and drain-conductance. We have further investigated the frequency characteristics of the device. The neural network training have been done using the three layer architecture using Levenberg-Marqaurdt Backpropagation algorithm. The results have been compared with the experimental data, which shows a close agreement and the validity of our proposed model.

Keywords

References

  1. See e.g., C. S. Wu, G. L. Lan, C. K. Pao, S. X. Bar, and M. Hu, 'Pseudomorphic HEMT devices for microwave and millimeter wave applications,' Mat. Res. Soc. Symp. Proc., vol. 300, pp. 41-54, 1993
  2. D.C. Streit, K. L. Tan, R. M. Dia, A. C. Han, P. H. Liu, H. C. Yen, and P. D. Chow, 'High performance W-band InAlAs-InGaAs-InP HEMT,' Electron. Lett., vol. 27, pp. 1149-1150, 1991 https://doi.org/10.1049/el:19910716
  3. T. Enoki, M. Tomizawa, Y. Umeda, and Y. Ishii, '0.05-_m-gate InlAs/GaInAs high electron mobility transistor and reduction of its short-channel effects,' Jpn. J. Appl. Phys., vol. 33, no. 1B, pp. 798?803, 1994 https://doi.org/10.1143/JJAP.33.798
  4. Meneghesso G, Grave T, Manfredi M, Pavesi M, Canali C, Zanoni E, 'Analysis of hot carrier transport in AlGaAs/InGaAs pseudomorphic HEMT's by means of electroluminescence,' IEEE Trans on Electron Devices, vol. 47, pp. 2-10, 2000 https://doi.org/10.1109/16.817561
  5. Farid Medjdoub, Mohammed Zaknoune, Xavier Wallart, Christ Gaquiere, Francois Dessenne, Jean-Luc Thobel, and Didier Theron, 'InP HEMT downscaling for power applications at W band,' IEEE Transactions on Electron Devics, vol. 52, no.10, pp. 2136-2143, October 2005 https://doi.org/10.1109/TED.2005.856176
  6. M. Schlechtweg et al., 'Coplanar millimeter-wave IC's for W-band applications using $0.15\;{\mu}m$ pseudomorphic MODFETs,' IEEE J Solid State Circuits, vol. 31, pp. 1426-1434, Oct. 1996 https://doi.org/10.1109/4.540051
  7. H.Wang et al., 'An ultra low noise W-band monolithic three-stage amplifier using $0.1\;{\mu}m$ pseudomorphic InGaAs/GaAs HEMT technology,' IEEE-MTT-S Tech. Dig., pp. 803-806, 1992 https://doi.org/10.1109/MWSYM.1992.188109
  8. Qi-Jun Zhang, K. C. Gupta, and Vijay K. Devabhaktuni,'Artificial Neural Networks for RF and Microwave Design-from theory to practice,' IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1339-1350, April 2003 https://doi.org/10.1109/TMTT.2003.809179
  9. Q.J. Zhang and K.C. Gupta, 'Neural networks for RF and microwave design', Artech House, Norwood, MA, 2000
  10. K.C. Gupta, 'Emerging trends in millimeter-wave CAD, IEEE Transactions on Microwave Theory and Techniques,vol. 46, pp. 747-755, 1998 https://doi.org/10.1109/22.681196
  11. Ruediger Quay, Karl Hess, Ralf Reuter, Michael Schlechtweg, Thomas Grave, Vassil Palankovski, and Siegfried Selberherr, 'Nonlinear Electronic Transport and Device performance of HEMTs,' IEEE Transactions on Electron devices, vol. 48, no. 2, Feb. 2001 https://doi.org/10.1109/16.902718