• Title/Summary/Keyword: InAs quantum dots

Search Result 276, Processing Time 0.025 seconds

Epitaxy of Self-assembled InAs Quantum Dots on Si Substrates by Atmospheric Pressure Metalorganic Chemical Vapor Deposition (대기압 MOCVD 시스템을 이용하여 Si 기판 위에 자발적으로 형성된 InAs 양자점에 대한 연구)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.527-531
    • /
    • 2005
  • Fully coherent self-assembled InAs quantum dots(QDs) grown on Si (100) substrates by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) were grown and the effect of growth conditions such as growth rate and growth time on quantum dots' morphology such as densities and sizes was investigated. InAs QDs of 30 - 80 nm in diameters with densities in the range of (0.6 - 1.7) x $10^{10}\;cm^{-2}$ were achieved on Si substrates and InAs layer was changed from 2 dimensional growth to 3 dimensional one at a nominal thickness less than 0.48 ML. This is attributed to the higher ambient pressure of APMOCVD suppressing of In segregation from the 2 dimensional InAs layer. This In segregation looked to disturb the dot formation especially when the growth rate was low so that the dots became less dense and bigger as the growth rate was lower.

Studies on single electron-hole recombination in InAs/GaAs Quantum dots (InAs/GaAs 양자점의 단전자-정공 재결합 연구)

  • 이주인;임재영;서정철
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.257-261
    • /
    • 2001
  • InAs/GaAs quantum dots between InGaAs/GaAs superlattices were grown by MBE. The quantum dots size is shown to be very uniform by measuring photoluminescence spectra of quantum dots. Single photon structures based on self-consistent calculation were grown and single photon devices were fabricated by e-beam lithography. The electrical hystereses of I-V curves for single Photon devices would result from single electron-hole recombination, where the resonant-tunneling voltages of electron and hole are different.

  • PDF

Synthesis and Optically Characterization of CdSe Nanocrystal (CdSe 나노입자의 합성과 광학 특징)

  • Kim, Chanyoung;Kim, Sunghyun;Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.250-253
    • /
    • 2008
  • New issues arise as to surface characterization, quantification and interface formation. Surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. In this dissertation, the synthesis of CdSe quantum dots were synthesized by pyrolysis of high-temperature organometallic reagents. In order to modify the size and quality of quantum dots, we controlled the growth temperature and the relative amount of precursors to be injected into the coordinating solvent. Moreover, an effective surface passivation of monodisperse nanocrystals was achieved by overcoating them with a higher-band-gap material. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence measurement.

  • PDF

Dielectric and Optical Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Oh, Jun-Ho;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.280-280
    • /
    • 2010
  • Semiconductor quantum dots are of great interest for both fundamental research and industrial applications due to their unique size dependant properties. The most promising application of colloidal semiconductor nanocrystals (quantum dots or QDs) is probably as emitters in biomedical labeling, LEDs, lasers etc. As compared to II-VI quantum dots, III-V have attracted greater interest owing to their less ionic lattice, larger exciton diameters and reduced toxicity. Among the III-V semiconductor quantum dots, Indium Phosphide (InP) is a popular material due to its bulk band gap of 1.35 (eV) which is responsible for the photoluminescence emission wavelength ranging from blue to near infrared with change in size of QDs. Nevertheless, in recent years, the exact type of collective properties that arise when semiconductor quantum dots (QDs) are assembled into two- or three-dimensional arrays has drawn much interest. The term "uantum dot solids" is used to indicate three-dimensional assemblies of semiconductor QDs. The optoelectronic properties of the quantum dot solids are known to depend on the electronic structure of the individual quantum dot building blocks and on their electronic interactions. This paper reports an efficient and rapid method to produce highly luminescent and monodisperse quantum dots solution and solid through fabrication of InP thin films. By varying the molar concentration of Indium to Ligand, QDs of different size were prepared. The absorption and emission behaviors were also studied. Similar measurements were also performed on InP quantum dot solid by fabricating InP thin films. The optical properties of the thin films are measured at different curing temperatures which show a blue shift with increase in temperature. The dielectric properties of the thin films were also investigated by Capacitance-voltage(C-V) measurements in a metal-insulator-semiconductor (MIS) device.

  • PDF

Orbital Quantum Bit in Si Quantum Dots

  • Ahn, D.;Oh, J.H.;Hwnag, S.W.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to let the system settle down to the symmetric orbital state. Estimates of the decoherence time is made for the longitudinal acoustic phonon process.

  • PDF

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.124-127
    • /
    • 2011
  • Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Quantum-dots light emitting diodes for a next generation display (양자점 기반 차세대 발광다이오드 기술)

  • Heo, Subeen;Kang, Seong Jun
    • Vacuum Magazine
    • /
    • v.4 no.4
    • /
    • pp.14-17
    • /
    • 2017
  • Recently, quantum-dots light emitting diodes (QLEDs) are considered as a next-generation display due to the superior luminescence behaviors, photo stability and narrow spectral emission bandwidth. Moreover, the emission color of QLEDs can be easily controlled by changing the dimension of quantum dots (QDs). A flexible display based on QLEDs can be achieved using low-cost solution process, such as a printing technology. Therefore, QLEDs are expected as a next generation display. In this document, recent progresses in QDs technology will be introduced.

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.