DOI QR코드

DOI QR Code

GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size

  • 이성훈 (한양대학교 세라믹공학과) ;
  • 김원목 (한국과학기술원 재료연구부) ;
  • 신동욱 (한양대학교 세라믹공학과) ;
  • 조성훈 (아주대학교 분자과학기술학과) ;
  • 정병기 (한국과학기술연구원 재료연구부) ;
  • 이택성 (한국과학기술연구원 재료연구부) ;
  • 이경석 (한국과학기술연구원 재료연구부)
  • Lee, Seong-Hun (Dept.of Ceramic Engineering, Hanyang University) ;
  • Kim, Won-Mok ;
  • Sin, Dong-Uk (Dept.of Ceramic Engineering, Hanyang University) ;
  • Jo, Seong-Hun (Dept, of Molecular Science and Technology Ajou University) ;
  • Jeong, Byeong-Gi (Materials Science and Technoligy Division, Korea Institute of Science and Technology) ;
  • Lee, Taek-Seong (Materials Science and Technoligy Division, Korea Institute of Science and Technology) ;
  • Lee, Gyeong-Seok (Materials Science and Technoligy Division, Korea Institute of Science and Technology)
  • 발행 : 2002.04.01

초록

For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

키워드

참고문헌

  1. Philip Moriarty, Rep. Prog. Phys., 64, 297 (2001) https://doi.org/10.1088/0034-4885/64/3/201
  2. E.M. Vogel, M.H.Weber, and D.M.Krol, Phys. Chem. Glasses, 32, 231 (1991)
  3. R.K. Jain and R.C. Lind, J. Opt. Soc. Am., 73, 647 (1983) https://doi.org/10.1364/JOSA.73.000647
  4. Wangzhou Shi, Kuixun Lin and Xuanying Lin, J. Appl. Phys., 81(6), 2822 (1997) https://doi.org/10.1063/1.363939
  5. John A. Lebens, Charles S. Tsai, and Kerry J. Vahala, Appl. Phys. Lett., 56(26), 2642 (1990) https://doi.org/10.1063/1.102862
  6. C. Flytzanis, F. Hache, M.C. Klein, D. Ricard and Ph. Roussignol, Nonlinear, Optics in Composite Materials, E. Wolf, Progress in Optics XXIX, p.322, Elsevier Sci. Pub., (1991)
  7. S. Miyata, Nonlinear Optics Fundamentals. Materials and Devicds, p.3, Elsevier, (1992)
  8. Hari Singh Nalwa, Hand book of Nanostructured Materials and Nanotechnology, Vol.4, p.482-496, 555-558, Academic Press, San Diego, (2000)
  9. S. Schmitt-Rink, D.A.B. Miller and D.S. Chemla, Phys. Rev. B, 35(15), 8113 (1987) https://doi.org/10.1103/PhysRevB.35.8113
  10. M. Hirasawa, N. Ichikawa, Y. Egashira, I. Honma, and H. Komiyama, Appl. Phys. Lett., 67(23), 3483 (1995) https://doi.org/10.1063/1.115254
  11. M. Hirasawa, H. Shirakawa, Y. Egashira, and H. Komiyama, J. Appl. Phys., 82, 1404 (1997) https://doi.org/10.1063/1.365917
  12. J. Tauc, A. Menth, J. Non-Cryst. Solids, 8-10, 569 (1972) https://doi.org/10.1016/0022-3093(72)90194-9
  13. Cheow-Keong Choo, Takashi Sakamoto, Sur. Sci., 445, 480 (2000) https://doi.org/10.1016/S0039-6028(99)01114-0
  14. J.S. Blakemore, J. Appl. Phys., 53, R123 (1982) https://doi.org/10.1063/1.331665
  15. Dirk Uwe Saenger, Phys. Rev. B, 53, 14604 (1996) https://doi.org/10.1103/PhysRevB.54.14604
  16. Charles Kittel, Introduction to Solid State Physics, 7th, p.214, John Wiley & Sons, INC., New York, (1996)