• Title/Summary/Keyword: InAs quantum dots

Search Result 276, Processing Time 0.03 seconds

Strain-induced islands and nanostructures shape transition's chronology on InAs (100) surface

  • Gambaryan, Karen M.;Aroutiounian, Vladimir M.;Simonyan, Arpine K.;Ai, Yuanfei;Ashalley, Eric;Wang, Zhiming M.
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.211-217
    • /
    • 2014
  • The self-assembled strain-induced sub-micrometric islands and nanostructures are grown from In-As-Sb-P quaternary liquid phase on InAs (100) substrates in Stranski-Krastanow growth mode. Two samples are under consideration. The first sample consists of unencapsulated islands and lens-shape quantum dots (QDs) grown from expressly inhomogeneous liquid phase. The second sample is an n-InAs/p-InAsSbP heterostructure with QDs embedded in the p-n junction interface. The morphology, size and shape of the structures are investigated by high-resolution scanning electron (SEM) and transmission electron (TEM) microscopy. It is shown that islands, as they decrease in size, undergo shape transitions. Particularly, as the volume decreases, the following succession of shape transitions are detected: sub-micrometric truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted "pre-pyramid", hemisphere, lens-shaped QD, which then evolves again to nano-pyramid. A critical size of $5{\pm}2nm$ for the shape transformation of InAsSbP-based lens-shaped QD to nano-pyramid is experimentally measured and theoretically evaluated.

Optical characteristics of GaN-based quantum structures

  • 조용훈
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.22-22
    • /
    • 2003
  • Studies on the optical properties related to the built-in internal field and the carrier localization present in various GaN-based structures are essential not only for the physical interest but in designing practical visible and ultraviolet light emitting device applications with better performance and quantum efficiency. We report on the optical characteristics of various dimensional GaN-based structures such as (i) GaN self-assembled quantum dots grown in Stranski-Krastanov mode (OD), vertically-aligned GaN nanorods (1D), graded-In-content InGaN quantum wells (2D), laterally-overgrown GaN pyramids (3D), and GaN epilayers grown on various substrates. We used a wide variety of optical techniques, such as photoluminescence (PL), PL excitation, micro-PL, cathodoluminescence, optically-pumped stimulated emission, and time-resolved PL spectroscopy. An overview and comparison of the optical characteristics of the above GaN-based structures will be given.

  • PDF

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Sensitivity enhancement of H2 gas sensor using PbS quantum dots (황화납 양자점 감지막을 통해 감도가 개선된 수소센서)

  • Kim, Sae-Wan;Kim, Na-Ri;Kwon, Jin-Beom;Kim, Jae Keon;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes (카드뮴 셀레나이드 양자점과 단일벽 탄소나노튜브로 구성된 이종 나노 소재를 기반으로 한 광전소자의 제작 및 특성평가)

  • Shim, Hyung-Cheoul;Jeong, So-Hee;Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2010
  • In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.

Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes (CdSe/ZnS 나노결정 양자점 Pyrolysis 제조와 발광다이오드 소자로의 응용)

  • Kang, Seung-Hee;Kumar, Kiran;Son, Kee-Chul;Huh, Hoon-Hoe;Kim, Kyung-Hyun;Huh, Chul;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.379-383
    • /
    • 2008
  • We report on the light-emitting diode (LED) characteristics of core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in $TiO_2$thin films on a Si substrate. A simple p-n junction could be formed when nanocrystal QDs on a p-type Si substrate were embedded in ${\sim}5\;nm$ thick $TiO_2$ thin film, which is inherently an n-type semiconductor. The $TiO_2$ thin film was deposited over QDs at $200^{\circ}C$ using plasma-enhanced metallorganic chemical vapor deposition. The LED structure of $TiO_2$/QDs/Si showed typical p-n diode currentvoltage and electroluminescence characteristics. The colloidal core-shell CdSe/ZnS QDs were synthesized via pyrolysis in the range of $220-280^{\circ}C$. Pyrolysis conditions were optimized through systematic studies as functions of synthesis temperature, reaction time, and surfactant amount.

Structural and Optical Properties of Self-assembled InAs Quantum Dots as a Function of Rapid Thermal Annealing Temperature (급속 열처리 온도에 따른 자발 형성된 InAs 양자점의 구조 및 광학 특성)

  • Cho, Shin-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2006
  • We present the effects of rapid thermal annealing (RTA) temperature on the structural and optical properties of self-assembled InAs quantum dot (QD) structures grown on GaAs substrates by molecular beam epitaxy (MBE). The photoluminescence (PL) measurements are performed in a closed-cycle refrigerator as a function of temperature for the unannealed and annealed samples. RTA at higher temperature results in the increase in island size, the corresponding decrease in the density of islands, and the redshift in the PL emission from the islands. The temperature dependence of the PL peak energy for the InAs QDs is well expressed by the Varshni equation. The thermal quenching activation energies for the samples unannealed and annealed at $600^{\circ}C$ are found to be $25{\pm}5meV$ and $47{\pm}5$ meV, respectively.

Detection of Al3+ by fluorescent turn-on nitrogen/sulphur-binary doped carbon dots

  • Siti Raudhatul Kamali;Chang-Nan Chen;Tai-Huei Wei
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.161-169
    • /
    • 2023
  • In this study, a straightforward and precise nitrogen/sulphur-codoped carbon dots (N/S-CD) was produced using a microwave irradiation approach. The N/S-CD was formulated from succinic acid (SA), bis-(3-aminopropyl)-amine (BAPA), and sodium thiosulphate (STS) as sources of carbon, nitrogen, and sulphur, respectively. The synthesized N/S-CD established a valuable quantum yield (QY) of 70 % and was sensitive to aluminium ion (Al3+) with a detection limit of 0.21 µM and a linear concentration range of 0-100 µM. When detecting Al3+ in real water samples, the N/S-CD resulted in a satisfactory recovery in the range of 91.14 %-103.37 %. Thus, the proposed study is very promising for Al3+ detection in environmental water samples.