Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.6.388

Sensitivity enhancement of H2 gas sensor using PbS quantum dots  

Kim, Sae-Wan (Safety System R&D Group, Korea Institute of Industrial Technology)
Kim, Na-Ri (Safety System R&D Group, Korea Institute of Industrial Technology)
Kwon, Jin-Beom (Safety System R&D Group, Korea Institute of Industrial Technology)
Kim, Jae Keon (Safety System R&D Group, Korea Institute of Industrial Technology)
Jung, Dong Geon (Safety System R&D Group, Korea Institute of Industrial Technology)
Kong, Seong Ho (Safety System R&D Group, Korea Institute of Industrial Technology)
Jung, Daewoong (Safety System R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of Sensor Science and Technology / v.29, no.6, 2020 , pp. 388-393 More about this Journal
Abstract
In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.
Keywords
Gas sensors; PbS quantum dots (QDs); Hydrogen gas; Carbon nano tube (CNT); palladium (Pd);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. B. Qadri, A Singh, and M. Yousuf, "Structural stability of PbS films as a function of temperature", Thin Solid Films, Vol. 431-432, pp. 506-510, 2003.   DOI
2 K. H. Kang, K. Y. Park, S. D. Han, and S. Y. Choi, "Fabrication of MISFET type hydrogen sensor for high performance", Trans Korean Hydrogen. New Energy Soc., Vol. 15, No. 4, pp. 317-323, 2004.
3 S. D. Han, "Review and new trends of hydrogen gas sensor technologies", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 67-86, 2010.   DOI
4 P. Wadkar, D. Bauskar, and P. Patil, "High performance H2 sensor based on ZnSnO3 cubic crystallites synthesized by a hydrothermal method", Talanta, Vol. 105, pp. 327-332, 2013.   DOI
5 W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, "An overview of hydrogen safety sensors and requirements", Int. J. Hydrog. Energy, Vol. 36, pp. 2462-2470, 2011.   DOI
6 H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, "High temperature fuel cell with ceria-yttria solid electrolyte", J. Electrochem. Soc. Vol. 135, No. 8, pp. 2077-2080, 1988.   DOI
7 T. Hubert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensor-review", Sens. Actuator. B-chem, Vol. 157, pp. 329-352, 2011.   DOI
8 A. Katsuki, and K. Fukui, "H2 selective gas sensor based on SnO2", Sens. Actuators B, Vol. 52, No. 1-2, pp. 30-37, 1998.   DOI
9 I. Treglazov, L. Leonova, Y. Dobrovolsky, A. Ryabov, A. Vakulenko, and S. Vassiliev, "Electrocatalytic effects in gas sensors based on low-temperature superprotonics", Sens. Actuators B, Vol. 106, No. 1, pp. 164-169, 2005.   DOI
10 A. D'Amico, A. Palma, and E. Verona, "Surface acoustic wave hydrogen sensor", Sens. Actuators, Vol. 3, pp. 31-39, 1982.   DOI
11 T. Seiyama, and S. Kagawa, "Study on a detector for gaseous components using semiconductive thin films", Anal. Chem., Vol. 38, No. 8, pp. 1069-1073, 1966.   DOI
12 Z. Tianshu, P, Hing, Y. Li, and Z. Jiancheng, "Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors", Sens. Actuators B, Vol 60, No. 2-3, pp. 208-215, 1999.   DOI
13 Y. Shimizu, E. Kanazawa, Y. Takao, and M. Egashira, "Modification of H2-sensitive breakdown voltages of SnO2 varistors with noble metals", Sens. Actuators B, Vol. 52, No. 1-2, pp. 38-44, 1998.   DOI
14 F. A. Gianturco, E. Yurtsever, M. Satta, and R. Wester, "Modeling Ionic reactions at interstellar temperature: The case of NH2- + H2 - NH3+ +H- ", J. Phys. Chem. A, Vol. 123, No. 46, pp. 9905-9918, 2019.   DOI
15 Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, "High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd", Sens. Actuators B, Vol 83, No. 1-3, pp. 195-201, 2002.   DOI
16 W. J. Moon, J. H. Yu, and G. M. Choi, "The CO and H2 gas selectivity of CuO-doped SnO2-ZnO composite gas sensor", Sens. Actuators B, Vol 87, No. 3, pp. 464-470, 2002.   DOI
17 G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, and H. Kitagawa, " Hydrogen storage in Pd nanocrystals covered with a metal-organic framework", Nat. Mater., Vol. 13, pp. 802-806, 2014.   DOI
18 X. Li, Z. Gu, J. Cho, H. Sun, and P. Kurup, "Tin-copper mixed metal oxide nanowires: synthesis and sensor response to chemical vapors", Sens. Actuator. B, Vol. 158, pp. 199-207, 2011.   DOI
19 J. Wang, M. Tong, X. Wang, and Y. Ma, "Preparation of H2 and LPG gas sensor", Sens. Actuators B, Vol. 84, No. 2-3, pp. 95-97, 2002.   DOI
20 I. Moreels, K. Lambert, D. Smeets, D. Muynck, T. Nollet, J. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, "Size-Dependent Optical Properties of Colloidal PbS Quantum Dots", ACS Nano, Vol. 3, pp. 3023-3030, 2009.   DOI
21 H. Zhao, M. Chaker, N. Wu, and D. Ma, "Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots", J. Mater. Chem., Vol. 21, pp. 8898-8904, 2011.   DOI
22 J. Gao, S. H. Jeong, F. Lin, P. T. Erslev, O. E. Semonin, J. M. Luther, and M. C. Beard, "Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells", Appl. Phys. Lett., Vol. 102, pp. 43506-43510, 2013.   DOI
23 X. Yang, F. Ren, Y. Wang, T. Ding, H. Sun, D. Ma, and X. W. Sun, "Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes", Sci. Rep., Vol. 7, pp. 14741-14746, 2017.   DOI
24 J. B. Kwon, S. W. Kim, J. S. Lee, C. E. Park, O. S. Kim, B. Xu, J. H. Bae, and S. W. Kang, "Uncooled short-wave infrared sensor based on PbS quantum dots using ZnO NPs", Nanomaterials, Vol. 9, No. 7, pp. 926, 2019.   DOI
25 J. Wang, M. Tong, X. Wang, and Y. Ma, "Preparation of H2 and LPG gas sensor", Sens. Actuators B, Vol. 84, No. 2-3, pp. 95-97, 2002.   DOI
26 E. H. Sargent, "Size-tunable infrared (1000-1600 nm) electroluminescence from solution-processible PbS quantum dot nanocrystals: Towards monolithic optoelectronic integration on silicon", J. Mod. Opt., Vol. 51, pp. 2797-2803, 2004.   DOI
27 Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang "Giant switchable photovoltaic effect in organometal trihalide perovskite devices", Nat. Mater., Vol. 14, pp. 193-198, 2015.   DOI
28 X. Zhong, S. Liu, Z. Zhang, L. Li, Z. Wei, and W. Knoll, "Synthesis of high-quality CdS, ZnS, and ZnxCd1-xS nanocrystals using metal salts and elemental sulfur", J. Mater. Chem., Vol. 14, pp. 2790-2794, 2004   DOI
29 C. Pacholski, A. Kornowski, and H. Weller "Self- assembly of ZnO: from nanodots to nanorods", Angew. Chem.Int. Ed., Vol. 41, pp. 1188-1191, s